{"title":"具有时变参数的混频变量实时预测","authors":"Markus Heinrich, Magnus Reif","doi":"10.2139/ssrn.3529010","DOIUrl":null,"url":null,"abstract":"This paper provides a detailed assessment of the real-time forecast accuracy of a wide range of vector autoregressive models (VAR) that allow for both structural change and indicators sampled at different frequencies. We extend the literature by evaluating a mixed-frequency time-varying parameter VAR with stochastic volatility (MF-TVP-SV-VAR). Overall, the MF-TVP-SV-VAR delivers accurate now- and forecasts and, on average, outperforms its competitors. We assess the models’ accuracy relative to expert forecasts and show that the MF-TVP-SV-VAR delivers better inflation nowcasts in this regard. Using an optimal prediction pool, we moreover demonstrate that the MF-TVP-SV-VAR has gained importance since the Great Recession.","PeriodicalId":11495,"journal":{"name":"Econometric Modeling: Capital Markets - Forecasting eJournal","volume":"109 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-Time Forecasting Using Mixed-Frequency Vars with Time-Varying Parameters\",\"authors\":\"Markus Heinrich, Magnus Reif\",\"doi\":\"10.2139/ssrn.3529010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a detailed assessment of the real-time forecast accuracy of a wide range of vector autoregressive models (VAR) that allow for both structural change and indicators sampled at different frequencies. We extend the literature by evaluating a mixed-frequency time-varying parameter VAR with stochastic volatility (MF-TVP-SV-VAR). Overall, the MF-TVP-SV-VAR delivers accurate now- and forecasts and, on average, outperforms its competitors. We assess the models’ accuracy relative to expert forecasts and show that the MF-TVP-SV-VAR delivers better inflation nowcasts in this regard. Using an optimal prediction pool, we moreover demonstrate that the MF-TVP-SV-VAR has gained importance since the Great Recession.\",\"PeriodicalId\":11495,\"journal\":{\"name\":\"Econometric Modeling: Capital Markets - Forecasting eJournal\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Modeling: Capital Markets - Forecasting eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3529010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Capital Markets - Forecasting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3529010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-Time Forecasting Using Mixed-Frequency Vars with Time-Varying Parameters
This paper provides a detailed assessment of the real-time forecast accuracy of a wide range of vector autoregressive models (VAR) that allow for both structural change and indicators sampled at different frequencies. We extend the literature by evaluating a mixed-frequency time-varying parameter VAR with stochastic volatility (MF-TVP-SV-VAR). Overall, the MF-TVP-SV-VAR delivers accurate now- and forecasts and, on average, outperforms its competitors. We assess the models’ accuracy relative to expert forecasts and show that the MF-TVP-SV-VAR delivers better inflation nowcasts in this regard. Using an optimal prediction pool, we moreover demonstrate that the MF-TVP-SV-VAR has gained importance since the Great Recession.