胎儿生长受限时胎儿肝、胎盘的自动诊断及纹理分析方法

A. Zeidan, Paula Ramirez Gilliland, Ashay Patel, Zhanchong Ou, Dimitra Flouri, N. Mufti, K. Maksym, Rosalind Aughwane, S. Ourselin, Anna L. David, A. Melbourne
{"title":"胎儿生长受限时胎儿肝、胎盘的自动诊断及纹理分析方法","authors":"A. Zeidan, Paula Ramirez Gilliland, Ashay Patel, Zhanchong Ou, Dimitra Flouri, N. Mufti, K. Maksym, Rosalind Aughwane, S. Ourselin, Anna L. David, A. Melbourne","doi":"10.59275/j.melba.2022-ac28","DOIUrl":null,"url":null,"abstract":"Fetal growth restriction (FGR) is a prevalent pregnancy condition characterised by failure of the fetus to reach its genetically predetermined growth potential. The multiple aetiologies, coupled with the risk of fetal complications - encompassing neurodevelopmental delay, neonatal morbidity, and stillbirth - motivate the need to improve holistic assessment of the FGR fetus using MRI. We hypothesised that the fetal liver and placenta would provide insights into FGR biomarkers, unattainable through conventional methods. Therefore, we explore the application of model fitting techniques, linear regression machine learning models, deep learning regression, and Haralick textured features from multi-contrast MRI for multi-fetal organ analysis of FGR. We employed T2 relaxometry and diffusion-weighted MRI datasets (using a combined T2-diffusion scan) for 12 normally grown and 12 FGR gestational age (GA) matched pregnancies (Estimated Fetal Weight below 3rd centile, Median 28+/-3wks). We applied the Intravoxel Incoherent Motion Model, which describes circulatory properties of the fetal organs, and analysed the resulting features distinguishing both cohorts. We additionally used novel multi-compartment models for MRI fetal analysis, which exhibit potential to provide a multi-organ FGR assessment, overcoming the limitations of empirical indicators - such as abnormal artery Doppler findings - to evaluate placental dysfunction. The placenta and fetal liver presented key differentiators between FGR and normal controls, with significant decreased perfusion, abnormal fetal blood motion and reduced fetal blood oxygenation. This may be associated with the preferential shunting of the fetal blood towards the fetal brain, affecting supply to the liver. These features were further explored to determine their role in assessing FGR severity, by employing simple machine learning models to predict FGR diagnosis (100% accuracy in test data, n=5), GA at delivery, time from MRI scan to delivery, and baby weight. We additionally explored the use of deep learning to regress the latter three variables, training a convolutional neural network with our liver and placenta voxel-level parameter maps, obtained from our multi-compartment model fitting. Image texture analysis of the fetal organs demonstrated prominent textural variations in the placental perfusion fractions maps between the groups (p<0.0009), and spatial differences in the incoherent fetal capillary blood motion in the liver (p<0.009). This research serves as a proof-of-concept, investigating the effect of FGR on fetal organs, measuring differences in perfusion and oxygenation within the placenta and fetal liver, and their prognostic importance in automated diagnosis using simple machine learning models.","PeriodicalId":75083,"journal":{"name":"The journal of machine learning for biomedical imaging","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Approach to Automated Diagnosis and Texture Analysis of the Fetal Liver & Placenta in Fetal Growth Restriction\",\"authors\":\"A. Zeidan, Paula Ramirez Gilliland, Ashay Patel, Zhanchong Ou, Dimitra Flouri, N. Mufti, K. Maksym, Rosalind Aughwane, S. Ourselin, Anna L. David, A. Melbourne\",\"doi\":\"10.59275/j.melba.2022-ac28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fetal growth restriction (FGR) is a prevalent pregnancy condition characterised by failure of the fetus to reach its genetically predetermined growth potential. The multiple aetiologies, coupled with the risk of fetal complications - encompassing neurodevelopmental delay, neonatal morbidity, and stillbirth - motivate the need to improve holistic assessment of the FGR fetus using MRI. We hypothesised that the fetal liver and placenta would provide insights into FGR biomarkers, unattainable through conventional methods. Therefore, we explore the application of model fitting techniques, linear regression machine learning models, deep learning regression, and Haralick textured features from multi-contrast MRI for multi-fetal organ analysis of FGR. We employed T2 relaxometry and diffusion-weighted MRI datasets (using a combined T2-diffusion scan) for 12 normally grown and 12 FGR gestational age (GA) matched pregnancies (Estimated Fetal Weight below 3rd centile, Median 28+/-3wks). We applied the Intravoxel Incoherent Motion Model, which describes circulatory properties of the fetal organs, and analysed the resulting features distinguishing both cohorts. We additionally used novel multi-compartment models for MRI fetal analysis, which exhibit potential to provide a multi-organ FGR assessment, overcoming the limitations of empirical indicators - such as abnormal artery Doppler findings - to evaluate placental dysfunction. The placenta and fetal liver presented key differentiators between FGR and normal controls, with significant decreased perfusion, abnormal fetal blood motion and reduced fetal blood oxygenation. This may be associated with the preferential shunting of the fetal blood towards the fetal brain, affecting supply to the liver. These features were further explored to determine their role in assessing FGR severity, by employing simple machine learning models to predict FGR diagnosis (100% accuracy in test data, n=5), GA at delivery, time from MRI scan to delivery, and baby weight. We additionally explored the use of deep learning to regress the latter three variables, training a convolutional neural network with our liver and placenta voxel-level parameter maps, obtained from our multi-compartment model fitting. Image texture analysis of the fetal organs demonstrated prominent textural variations in the placental perfusion fractions maps between the groups (p<0.0009), and spatial differences in the incoherent fetal capillary blood motion in the liver (p<0.009). This research serves as a proof-of-concept, investigating the effect of FGR on fetal organs, measuring differences in perfusion and oxygenation within the placenta and fetal liver, and their prognostic importance in automated diagnosis using simple machine learning models.\",\"PeriodicalId\":75083,\"journal\":{\"name\":\"The journal of machine learning for biomedical imaging\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The journal of machine learning for biomedical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59275/j.melba.2022-ac28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The journal of machine learning for biomedical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59275/j.melba.2022-ac28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

胎儿生长受限(FGR)是一种常见的妊娠状况,其特征是胎儿未能达到其遗传预定的生长潜力。多种病因,加上胎儿并发症的风险-包括神经发育迟缓,新生儿发病率和死产-促使需要改进使用MRI对FGR胎儿的整体评估。我们假设胎儿肝脏和胎盘将提供通过传统方法无法获得的FGR生物标志物的见解。因此,我们探索了模型拟合技术、线性回归机器学习模型、深度学习回归和多对比MRI哈拉里克纹理特征在FGR多胎儿器官分析中的应用。我们使用T2松弛测量和弥散加权MRI数据集(使用联合T2弥散扫描)对12例正常生长和12例FGR胎龄(GA)匹配的妊娠(估计胎儿体重低于第3位,中位28+/-3周)。我们应用了描述胎儿器官循环特性的体素内非相干运动模型,并分析了区分这两个队列的结果特征。此外,我们还使用了新的多室模型进行胎儿MRI分析,该模型具有提供多器官FGR评估的潜力,克服了经验指标(如异常动脉多普勒结果)评估胎盘功能障碍的局限性。胎盘和胎儿肝脏是FGR与正常对照的关键分化因子,灌注明显减少,胎儿血液运动异常,胎儿血氧减少。这可能与胎儿血液优先分流到胎儿大脑有关,影响了肝脏的供应。通过使用简单的机器学习模型来预测FGR诊断(测试数据100%准确率,n=5)、分娩时GA、从MRI扫描到分娩的时间以及婴儿体重,我们进一步探索了这些特征,以确定它们在评估FGR严重程度中的作用。我们还探索了使用深度学习来回归后三个变量,用我们的肝脏和胎盘体素级参数图训练卷积神经网络,这些参数图是从我们的多室模型拟合中获得的。胎儿器官图像纹理分析显示,两组间胎盘灌注分数图纹理差异显著(p<0.0009),胎儿肝脏毛细血管血流运动不连贯的空间差异显著(p<0.009)。本研究作为概念验证,研究FGR对胎儿器官的影响,测量胎盘和胎儿肝脏内灌注和氧合的差异,以及它们在使用简单机器学习模型的自动诊断中的预后重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Approach to Automated Diagnosis and Texture Analysis of the Fetal Liver & Placenta in Fetal Growth Restriction
Fetal growth restriction (FGR) is a prevalent pregnancy condition characterised by failure of the fetus to reach its genetically predetermined growth potential. The multiple aetiologies, coupled with the risk of fetal complications - encompassing neurodevelopmental delay, neonatal morbidity, and stillbirth - motivate the need to improve holistic assessment of the FGR fetus using MRI. We hypothesised that the fetal liver and placenta would provide insights into FGR biomarkers, unattainable through conventional methods. Therefore, we explore the application of model fitting techniques, linear regression machine learning models, deep learning regression, and Haralick textured features from multi-contrast MRI for multi-fetal organ analysis of FGR. We employed T2 relaxometry and diffusion-weighted MRI datasets (using a combined T2-diffusion scan) for 12 normally grown and 12 FGR gestational age (GA) matched pregnancies (Estimated Fetal Weight below 3rd centile, Median 28+/-3wks). We applied the Intravoxel Incoherent Motion Model, which describes circulatory properties of the fetal organs, and analysed the resulting features distinguishing both cohorts. We additionally used novel multi-compartment models for MRI fetal analysis, which exhibit potential to provide a multi-organ FGR assessment, overcoming the limitations of empirical indicators - such as abnormal artery Doppler findings - to evaluate placental dysfunction. The placenta and fetal liver presented key differentiators between FGR and normal controls, with significant decreased perfusion, abnormal fetal blood motion and reduced fetal blood oxygenation. This may be associated with the preferential shunting of the fetal blood towards the fetal brain, affecting supply to the liver. These features were further explored to determine their role in assessing FGR severity, by employing simple machine learning models to predict FGR diagnosis (100% accuracy in test data, n=5), GA at delivery, time from MRI scan to delivery, and baby weight. We additionally explored the use of deep learning to regress the latter three variables, training a convolutional neural network with our liver and placenta voxel-level parameter maps, obtained from our multi-compartment model fitting. Image texture analysis of the fetal organs demonstrated prominent textural variations in the placental perfusion fractions maps between the groups (p<0.0009), and spatial differences in the incoherent fetal capillary blood motion in the liver (p<0.009). This research serves as a proof-of-concept, investigating the effect of FGR on fetal organs, measuring differences in perfusion and oxygenation within the placenta and fetal liver, and their prognostic importance in automated diagnosis using simple machine learning models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信