螺旋力和旋转对多孔介质中二元粘弹性流体双对流的联合影响:线性和弱非线性分析

IF 2.3 4区 工程技术 Q1 MATHEMATICS, APPLIED
M. Kpossa, V. Monwanou
{"title":"螺旋力和旋转对多孔介质中二元粘弹性流体双对流的联合影响:线性和弱非线性分析","authors":"M. Kpossa, V. Monwanou","doi":"10.1002/zamm.202200363","DOIUrl":null,"url":null,"abstract":"We used linear stability theory based on the normal mode decomposition technique and nonlinear stability theory based on the minimum representation of double Fourier series to study the criterion of appearance of the stationary convection and the oscillatory convection; and the rate of heat and mass transfer in a binary viscoelastic fluid mixture in a rotating porous medium under the effect of helical force. We have determined the analytical expression of the Rayleigh number of the system as a function of the dimensionless parameters. Expressions for heat and mass transfer rates are determined as a function of Nusselt and Sherwood number, respectively. The transient behaviors of the Nusselt number and the Sherwood number are studied by solving the finite amplitude equations using the Runge‐Kutta method. Then, the effect of each dimensionless parameter on the system is studied pointed out interesting results. According to the analysis of the different results obtained, it appears that in a porous medium saturated by a binary mixture of viscoelastic fluid in rotation, the Taylor‐Darcy number TaD$Ta_D$ , the delay time parameter λ2 and the mass Rayleigh‐Darcy number RaCD$Ra_{CD}$ delay the onset of stationary and oscillatory convection. On the other hand, the helical force SD$S_{D}$ , the relaxation time parameter λ1, the ratio of diffusivities τ and the number of Vadasz Va$Va$ accelerate the onset of stationary and oscillatory convection. In the case of the nonlinear stability study, at steady state, the helical force SD$S_{D}$ accelerates the rate of heat and mass transfer. On the other hand, the Taylor‐Darcy number TaD$Ta_D$ , the diffusivity ratio τ and the mass Rayleigh‐Darcy number RaCD$Ra_{CD}$ retard the rate of heat and mass transfer. In the unsteady state, the helical force SD$S_{D}$ , the relaxation time parameter λ1 and the mass Rayleigh‐Darcy number RaCD$Ra_{CD}$ accelerate the rate of heat and mass transfer. This is not the case for the Taylor‐Darcy number TaD$Ta_D$ and the delay time parameter λ2.","PeriodicalId":23924,"journal":{"name":"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined effect of helical force and rotation on the double convection of a binary viscoelastic fluid in a porous medium: Linear and weakly nonlinear analysis\",\"authors\":\"M. Kpossa, V. Monwanou\",\"doi\":\"10.1002/zamm.202200363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We used linear stability theory based on the normal mode decomposition technique and nonlinear stability theory based on the minimum representation of double Fourier series to study the criterion of appearance of the stationary convection and the oscillatory convection; and the rate of heat and mass transfer in a binary viscoelastic fluid mixture in a rotating porous medium under the effect of helical force. We have determined the analytical expression of the Rayleigh number of the system as a function of the dimensionless parameters. Expressions for heat and mass transfer rates are determined as a function of Nusselt and Sherwood number, respectively. The transient behaviors of the Nusselt number and the Sherwood number are studied by solving the finite amplitude equations using the Runge‐Kutta method. Then, the effect of each dimensionless parameter on the system is studied pointed out interesting results. According to the analysis of the different results obtained, it appears that in a porous medium saturated by a binary mixture of viscoelastic fluid in rotation, the Taylor‐Darcy number TaD$Ta_D$ , the delay time parameter λ2 and the mass Rayleigh‐Darcy number RaCD$Ra_{CD}$ delay the onset of stationary and oscillatory convection. On the other hand, the helical force SD$S_{D}$ , the relaxation time parameter λ1, the ratio of diffusivities τ and the number of Vadasz Va$Va$ accelerate the onset of stationary and oscillatory convection. In the case of the nonlinear stability study, at steady state, the helical force SD$S_{D}$ accelerates the rate of heat and mass transfer. On the other hand, the Taylor‐Darcy number TaD$Ta_D$ , the diffusivity ratio τ and the mass Rayleigh‐Darcy number RaCD$Ra_{CD}$ retard the rate of heat and mass transfer. In the unsteady state, the helical force SD$S_{D}$ , the relaxation time parameter λ1 and the mass Rayleigh‐Darcy number RaCD$Ra_{CD}$ accelerate the rate of heat and mass transfer. This is not the case for the Taylor‐Darcy number TaD$Ta_D$ and the delay time parameter λ2.\",\"PeriodicalId\":23924,\"journal\":{\"name\":\"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/zamm.202200363\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/zamm.202200363","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combined effect of helical force and rotation on the double convection of a binary viscoelastic fluid in a porous medium: Linear and weakly nonlinear analysis
We used linear stability theory based on the normal mode decomposition technique and nonlinear stability theory based on the minimum representation of double Fourier series to study the criterion of appearance of the stationary convection and the oscillatory convection; and the rate of heat and mass transfer in a binary viscoelastic fluid mixture in a rotating porous medium under the effect of helical force. We have determined the analytical expression of the Rayleigh number of the system as a function of the dimensionless parameters. Expressions for heat and mass transfer rates are determined as a function of Nusselt and Sherwood number, respectively. The transient behaviors of the Nusselt number and the Sherwood number are studied by solving the finite amplitude equations using the Runge‐Kutta method. Then, the effect of each dimensionless parameter on the system is studied pointed out interesting results. According to the analysis of the different results obtained, it appears that in a porous medium saturated by a binary mixture of viscoelastic fluid in rotation, the Taylor‐Darcy number TaD$Ta_D$ , the delay time parameter λ2 and the mass Rayleigh‐Darcy number RaCD$Ra_{CD}$ delay the onset of stationary and oscillatory convection. On the other hand, the helical force SD$S_{D}$ , the relaxation time parameter λ1, the ratio of diffusivities τ and the number of Vadasz Va$Va$ accelerate the onset of stationary and oscillatory convection. In the case of the nonlinear stability study, at steady state, the helical force SD$S_{D}$ accelerates the rate of heat and mass transfer. On the other hand, the Taylor‐Darcy number TaD$Ta_D$ , the diffusivity ratio τ and the mass Rayleigh‐Darcy number RaCD$Ra_{CD}$ retard the rate of heat and mass transfer. In the unsteady state, the helical force SD$S_{D}$ , the relaxation time parameter λ1 and the mass Rayleigh‐Darcy number RaCD$Ra_{CD}$ accelerate the rate of heat and mass transfer. This is not the case for the Taylor‐Darcy number TaD$Ta_D$ and the delay time parameter λ2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
8.70%
发文量
199
审稿时长
3.0 months
期刊介绍: ZAMM is one of the oldest journals in the field of applied mathematics and mechanics and is read by scientists all over the world. The aim and scope of ZAMM is the publication of new results and review articles and information on applied mathematics (mainly numerical mathematics and various applications of analysis, in particular numerical aspects of differential and integral equations), on the entire field of theoretical and applied mechanics (solid mechanics, fluid mechanics, thermodynamics). ZAMM is also open to essential contributions on mathematics in industrial applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信