在空间查询引擎中支持编译:(视觉文件)

Ruby Y. Tahboub, Tiark Rompf
{"title":"在空间查询引擎中支持编译:(视觉文件)","authors":"Ruby Y. Tahboub, Tiark Rompf","doi":"10.1145/2996913.2996945","DOIUrl":null,"url":null,"abstract":"Today's 'Big' spatial computing and analytics are largely processed in-memory. Still, evaluation in prominent spatial query engines is neither fully optimized for modern-class platforms nor taking full advantage of compilation (i.e., generating low-level query code). Query compilation has been rapidly rising inside in-memory relational database management systems (RDBMSs) achieving remarkable speedups; how can we bring similar benefits to spatial query engines? In this research, we bring in proven Programming Languages (PL) approaches e.g., partial evaluation, generative programming, etc. and leverage the power of modern hardware to extend query compilation inside spatial query engines. We envision a fully compiled spatial query engine that is efficient and feasible to implement in a high-level language. We describe LB2-Spatial; a prototype for a fully compiled spatial query engine that employs generative and multi-stage programming to realize query compilation. Furthermore, we discuss challenges, and conduct a preliminary experiment to highlight potential gains of compilation. Finally, we sketch potential avenues for supporting spatial query compilation in Postgres/ PostGIS; a traditional RDBMS and Spark/ Spark SQL; a main-memory cluster computing framework.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"85 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"On supporting compilation in spatial query engines: (vision paper)\",\"authors\":\"Ruby Y. Tahboub, Tiark Rompf\",\"doi\":\"10.1145/2996913.2996945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today's 'Big' spatial computing and analytics are largely processed in-memory. Still, evaluation in prominent spatial query engines is neither fully optimized for modern-class platforms nor taking full advantage of compilation (i.e., generating low-level query code). Query compilation has been rapidly rising inside in-memory relational database management systems (RDBMSs) achieving remarkable speedups; how can we bring similar benefits to spatial query engines? In this research, we bring in proven Programming Languages (PL) approaches e.g., partial evaluation, generative programming, etc. and leverage the power of modern hardware to extend query compilation inside spatial query engines. We envision a fully compiled spatial query engine that is efficient and feasible to implement in a high-level language. We describe LB2-Spatial; a prototype for a fully compiled spatial query engine that employs generative and multi-stage programming to realize query compilation. Furthermore, we discuss challenges, and conduct a preliminary experiment to highlight potential gains of compilation. Finally, we sketch potential avenues for supporting spatial query compilation in Postgres/ PostGIS; a traditional RDBMS and Spark/ Spark SQL; a main-memory cluster computing framework.\",\"PeriodicalId\":20525,\"journal\":{\"name\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2996913.2996945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2996945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

今天的“大”空间计算和分析主要是在内存中处理的。但是,突出的空间查询引擎中的求值既没有针对现代级平台进行充分优化,也没有充分利用编译(即生成低级查询代码)的优势。查询编译在内存关系数据库管理系统(rdbms)中得到了迅速的发展,并取得了显著的速度提升;我们如何为空间查询引擎带来类似的好处?在本研究中,我们引入了经过验证的编程语言(PL)方法,如部分求值、生成式编程等,并利用现代硬件的力量在空间查询引擎中扩展查询编译。我们设想了一个完全编译的空间查询引擎,它可以高效、可行地用高级语言实现。我们描述lb2 -空间;一个采用生成式多阶段编程实现查询编译的全编译空间查询引擎原型。此外,我们讨论了挑战,并进行了初步实验,以突出编译的潜在收益。最后,我们概述了在Postgres/ PostGIS中支持空间查询编译的潜在途径;传统的RDBMS和Spark/ Spark SQL;一个主存集群计算框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On supporting compilation in spatial query engines: (vision paper)
Today's 'Big' spatial computing and analytics are largely processed in-memory. Still, evaluation in prominent spatial query engines is neither fully optimized for modern-class platforms nor taking full advantage of compilation (i.e., generating low-level query code). Query compilation has been rapidly rising inside in-memory relational database management systems (RDBMSs) achieving remarkable speedups; how can we bring similar benefits to spatial query engines? In this research, we bring in proven Programming Languages (PL) approaches e.g., partial evaluation, generative programming, etc. and leverage the power of modern hardware to extend query compilation inside spatial query engines. We envision a fully compiled spatial query engine that is efficient and feasible to implement in a high-level language. We describe LB2-Spatial; a prototype for a fully compiled spatial query engine that employs generative and multi-stage programming to realize query compilation. Furthermore, we discuss challenges, and conduct a preliminary experiment to highlight potential gains of compilation. Finally, we sketch potential avenues for supporting spatial query compilation in Postgres/ PostGIS; a traditional RDBMS and Spark/ Spark SQL; a main-memory cluster computing framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信