模态逻辑的0 - 1定律

Joseph Y. Halpern, B. Kapron
{"title":"模态逻辑的0 - 1定律","authors":"Joseph Y. Halpern, B. Kapron","doi":"10.1109/LICS.1992.185549","DOIUrl":null,"url":null,"abstract":"It is shown that a 0-1 law holds for propositional modal logic, both for structure validity and for frame validity. In the case of structure validity, the result follows easily from the well-known 0-1 law for first-order logic. However, the proof gives considerably more information. It leads to an elegant axiomatization for almost-sure structure validity, and sharper complexity bounds. Since frame validity can be reduced to a II/sub 1//sup 1/ formula, the 0-1 law for frame validity helps delineate when 0-1 laws exist for second-order logics.<<ETX>>","PeriodicalId":6412,"journal":{"name":"[1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science","volume":"26 1","pages":"369-380"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Zero-one laws for modal logic\",\"authors\":\"Joseph Y. Halpern, B. Kapron\",\"doi\":\"10.1109/LICS.1992.185549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown that a 0-1 law holds for propositional modal logic, both for structure validity and for frame validity. In the case of structure validity, the result follows easily from the well-known 0-1 law for first-order logic. However, the proof gives considerably more information. It leads to an elegant axiomatization for almost-sure structure validity, and sharper complexity bounds. Since frame validity can be reduced to a II/sub 1//sup 1/ formula, the 0-1 law for frame validity helps delineate when 0-1 laws exist for second-order logics.<<ETX>>\",\"PeriodicalId\":6412,\"journal\":{\"name\":\"[1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"26 1\",\"pages\":\"369-380\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.1992.185549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1992.185549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

证明了命题模态逻辑在结构有效性和框架有效性上都有一个0-1定律。在结构有效的情况下,结果很容易遵循一阶逻辑的众所周知的0-1定律。然而,这个证明提供了相当多的信息。它为几乎确定的结构有效性提供了一个优雅的公理化,以及更清晰的复杂性界限。由于帧有效性可以简化为II/sub 1//sup 1/公式,因此帧有效性的0-1定律有助于描述二阶逻辑何时存在0-1定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zero-one laws for modal logic
It is shown that a 0-1 law holds for propositional modal logic, both for structure validity and for frame validity. In the case of structure validity, the result follows easily from the well-known 0-1 law for first-order logic. However, the proof gives considerably more information. It leads to an elegant axiomatization for almost-sure structure validity, and sharper complexity bounds. Since frame validity can be reduced to a II/sub 1//sup 1/ formula, the 0-1 law for frame validity helps delineate when 0-1 laws exist for second-order logics.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信