Zhengyu Liu, Yongheng Zhang, Xinxin Zhang, Huaihong Wang, L. Nie, Xinji Xu, Ning Wang, Ningbo Li
{"title":"基于改进扩展卡尔曼滤波的跨孔ERT时间序列数据反演与监测方法","authors":"Zhengyu Liu, Yongheng Zhang, Xinxin Zhang, Huaihong Wang, L. Nie, Xinji Xu, Ning Wang, Ningbo Li","doi":"10.32389/jeeg20-051","DOIUrl":null,"url":null,"abstract":"In recent decades, the DC resistivity method has been applied to geophysical monitoring because of its sensitivity to hydrogeological properties. However, existing inversion algorithms cannot give a reasonable image if fluid migration is sudden and unpredictable. Additionally, systematic or measurement errors can severely interfere with accurate object location. To address these issues, we propose an improved time series inversion method for cross-hole electrical resistivity tomography (cross-hole ERT) based on the Extended Kalman Filter (EKF). Traditional EKF includes two steps to obtain the current model state: prediction and correction. We improved the prediction step by introducing the grey time series prediction method to create a new regular model sequence that can infer the potential trend of underground resistivity changes and provide a prior estimation state for reference during the next moment. To include more current information in the prior estimation state and decrease the non-uniqueness, the prediction model needs to be further updated by the least-squares method. For the correction step, we used single time-step multiple filtering to better deal with the case of sudden and rapid changes. We designed three different numerical tests simulating rapid changes in a fluid to validate the proposed method. The proposed method can capture rapid changes in the groundwater transport rate and direction of the groundwater movement for real-time imaging. Model and field experiments were performed. The inversion results of the model experiment were generally consistent with the results of dye tracing, and the groundwater behavior in the field experiment was consistent with the predicted groundwater evolution process.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"73 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time Series Data Inversion and Monitoring Method for Cross-Hole ERT Based on an Improved Extended Kalman Filter\",\"authors\":\"Zhengyu Liu, Yongheng Zhang, Xinxin Zhang, Huaihong Wang, L. Nie, Xinji Xu, Ning Wang, Ningbo Li\",\"doi\":\"10.32389/jeeg20-051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent decades, the DC resistivity method has been applied to geophysical monitoring because of its sensitivity to hydrogeological properties. However, existing inversion algorithms cannot give a reasonable image if fluid migration is sudden and unpredictable. Additionally, systematic or measurement errors can severely interfere with accurate object location. To address these issues, we propose an improved time series inversion method for cross-hole electrical resistivity tomography (cross-hole ERT) based on the Extended Kalman Filter (EKF). Traditional EKF includes two steps to obtain the current model state: prediction and correction. We improved the prediction step by introducing the grey time series prediction method to create a new regular model sequence that can infer the potential trend of underground resistivity changes and provide a prior estimation state for reference during the next moment. To include more current information in the prior estimation state and decrease the non-uniqueness, the prediction model needs to be further updated by the least-squares method. For the correction step, we used single time-step multiple filtering to better deal with the case of sudden and rapid changes. We designed three different numerical tests simulating rapid changes in a fluid to validate the proposed method. The proposed method can capture rapid changes in the groundwater transport rate and direction of the groundwater movement for real-time imaging. Model and field experiments were performed. The inversion results of the model experiment were generally consistent with the results of dye tracing, and the groundwater behavior in the field experiment was consistent with the predicted groundwater evolution process.\",\"PeriodicalId\":15748,\"journal\":{\"name\":\"Journal of Environmental and Engineering Geophysics\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental and Engineering Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.32389/jeeg20-051\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental and Engineering Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.32389/jeeg20-051","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Time Series Data Inversion and Monitoring Method for Cross-Hole ERT Based on an Improved Extended Kalman Filter
In recent decades, the DC resistivity method has been applied to geophysical monitoring because of its sensitivity to hydrogeological properties. However, existing inversion algorithms cannot give a reasonable image if fluid migration is sudden and unpredictable. Additionally, systematic or measurement errors can severely interfere with accurate object location. To address these issues, we propose an improved time series inversion method for cross-hole electrical resistivity tomography (cross-hole ERT) based on the Extended Kalman Filter (EKF). Traditional EKF includes two steps to obtain the current model state: prediction and correction. We improved the prediction step by introducing the grey time series prediction method to create a new regular model sequence that can infer the potential trend of underground resistivity changes and provide a prior estimation state for reference during the next moment. To include more current information in the prior estimation state and decrease the non-uniqueness, the prediction model needs to be further updated by the least-squares method. For the correction step, we used single time-step multiple filtering to better deal with the case of sudden and rapid changes. We designed three different numerical tests simulating rapid changes in a fluid to validate the proposed method. The proposed method can capture rapid changes in the groundwater transport rate and direction of the groundwater movement for real-time imaging. Model and field experiments were performed. The inversion results of the model experiment were generally consistent with the results of dye tracing, and the groundwater behavior in the field experiment was consistent with the predicted groundwater evolution process.
期刊介绍:
The JEEG (ISSN 1083-1363) is the peer-reviewed journal of the Environmental and Engineering Geophysical Society (EEGS). JEEG welcomes manuscripts on new developments in near-surface geophysics applied to environmental, engineering, and mining issues, as well as novel near-surface geophysics case histories and descriptions of new hardware aimed at the near-surface geophysics community.