基于软件的n模冗余容错可编程投票人

Keun Soo YIM, V. Sidea, Z. Kalbarczyk, Deming Chen, R. Iyer
{"title":"基于软件的n模冗余容错可编程投票人","authors":"Keun Soo YIM, V. Sidea, Z. Kalbarczyk, Deming Chen, R. Iyer","doi":"10.1109/AERO.2012.6187253","DOIUrl":null,"url":null,"abstract":"This paper presents a fault-tolerant, programmable voter architecture for software-implemented N-tuple modular redundant (NMR) computer systems. Software NMR is a cost-efficient solution for high-performance, mission-critical computer systems because this can be built on top of commercial off-the-shelf (COTS) devices. Due to the large volume and randomness of voting data, software NMR system requires a programmable voter. Our experiment shows that voting software that executes on a processor has the time-of-check-to-time-of-use (TOCTTOU) vulnerabilities and is unable to tolerate long duration faults. In order to address these two problems, we present a special-purpose voter processor and its embedded software architecture. The processor has a set of new instructions and hardware modules that are used by the software in order to accelerate the voting software execution and address the identified two reliability problems. We have implemented the presented system on an FPGA platform. Our evaluation result shows that using the presented system reduces the execution time of error detection codes (commonly used in voting software) by 14% and their code size by 56%. Our fault injection experiments validate that the presented system removes the TOCTTOU vulnerabilities and recovers under both transient and long duration faults. This is achieved by using 0.7% extra hardware in a baseline processor.","PeriodicalId":6421,"journal":{"name":"2012 IEEE Aerospace Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"A fault-tolerant programmable voter for software-based N-modular redundancy\",\"authors\":\"Keun Soo YIM, V. Sidea, Z. Kalbarczyk, Deming Chen, R. Iyer\",\"doi\":\"10.1109/AERO.2012.6187253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a fault-tolerant, programmable voter architecture for software-implemented N-tuple modular redundant (NMR) computer systems. Software NMR is a cost-efficient solution for high-performance, mission-critical computer systems because this can be built on top of commercial off-the-shelf (COTS) devices. Due to the large volume and randomness of voting data, software NMR system requires a programmable voter. Our experiment shows that voting software that executes on a processor has the time-of-check-to-time-of-use (TOCTTOU) vulnerabilities and is unable to tolerate long duration faults. In order to address these two problems, we present a special-purpose voter processor and its embedded software architecture. The processor has a set of new instructions and hardware modules that are used by the software in order to accelerate the voting software execution and address the identified two reliability problems. We have implemented the presented system on an FPGA platform. Our evaluation result shows that using the presented system reduces the execution time of error detection codes (commonly used in voting software) by 14% and their code size by 56%. Our fault injection experiments validate that the presented system removes the TOCTTOU vulnerabilities and recovers under both transient and long duration faults. This is achieved by using 0.7% extra hardware in a baseline processor.\",\"PeriodicalId\":6421,\"journal\":{\"name\":\"2012 IEEE Aerospace Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Aerospace Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.2012.6187253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2012.6187253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文提出了一种用于软件实现的n元组模块冗余(NMR)计算机系统的容错、可编程选民体系结构。软件NMR是高性能、关键任务计算机系统的一种经济高效的解决方案,因为它可以构建在商用现货(COTS)设备之上。由于投票数据的大容量和随机性,软件核磁共振系统需要一个可编程的投票人。我们的实验表明,在处理器上执行的投票软件具有检查时间到使用时间(TOCTTOU)漏洞,并且无法容忍长时间的故障。为了解决这两个问题,我们提出了一种专用的投票处理器及其嵌入式软件架构。该处理器具有一组新的指令和硬件模块,软件使用这些指令和硬件模块来加速投票软件的执行,并解决已确定的两个可靠性问题。我们在FPGA平台上实现了该系统。我们的评估结果表明,使用该系统可以将错误检测代码(通常用于投票软件)的执行时间减少14%,代码大小减少56%。我们的故障注入实验验证了该系统在瞬态和长时间故障下都能消除TOCTTOU漏洞并恢复。这是通过在基准处理器中使用0.7%的额外硬件来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fault-tolerant programmable voter for software-based N-modular redundancy
This paper presents a fault-tolerant, programmable voter architecture for software-implemented N-tuple modular redundant (NMR) computer systems. Software NMR is a cost-efficient solution for high-performance, mission-critical computer systems because this can be built on top of commercial off-the-shelf (COTS) devices. Due to the large volume and randomness of voting data, software NMR system requires a programmable voter. Our experiment shows that voting software that executes on a processor has the time-of-check-to-time-of-use (TOCTTOU) vulnerabilities and is unable to tolerate long duration faults. In order to address these two problems, we present a special-purpose voter processor and its embedded software architecture. The processor has a set of new instructions and hardware modules that are used by the software in order to accelerate the voting software execution and address the identified two reliability problems. We have implemented the presented system on an FPGA platform. Our evaluation result shows that using the presented system reduces the execution time of error detection codes (commonly used in voting software) by 14% and their code size by 56%. Our fault injection experiments validate that the presented system removes the TOCTTOU vulnerabilities and recovers under both transient and long duration faults. This is achieved by using 0.7% extra hardware in a baseline processor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信