λ-设计的一些结果

W.G. Bridges
{"title":"λ-设计的一些结果","authors":"W.G. Bridges","doi":"10.1016/S0021-9800(70)80030-8","DOIUrl":null,"url":null,"abstract":"<div><p>A λ-design as introduced by Ryser [3] is a (0, 1)-square matrix with constant column inner products but <em>not</em> all column sums equal. Ryser has shown such a matrix to have two row sums and he constructs an infinite family of λ-designs called <em>H</em>-designs. This paper does three things: (1) generalizes Ryser's <em>H</em>-design construction to an arbitrary (ν, <em>k</em>, λ)-configuration, (2) establishes some additional general properties of λ-designs, and (3) determines all 4-designs.</p></div>","PeriodicalId":100765,"journal":{"name":"Journal of Combinatorial Theory","volume":"8 4","pages":"Pages 350-360"},"PeriodicalIF":0.0000,"publicationDate":"1970-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80030-8","citationCount":"22","resultStr":"{\"title\":\"Some results on λ-designs\",\"authors\":\"W.G. Bridges\",\"doi\":\"10.1016/S0021-9800(70)80030-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A λ-design as introduced by Ryser [3] is a (0, 1)-square matrix with constant column inner products but <em>not</em> all column sums equal. Ryser has shown such a matrix to have two row sums and he constructs an infinite family of λ-designs called <em>H</em>-designs. This paper does three things: (1) generalizes Ryser's <em>H</em>-design construction to an arbitrary (ν, <em>k</em>, λ)-configuration, (2) establishes some additional general properties of λ-designs, and (3) determines all 4-designs.</p></div>\",\"PeriodicalId\":100765,\"journal\":{\"name\":\"Journal of Combinatorial Theory\",\"volume\":\"8 4\",\"pages\":\"Pages 350-360\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1970-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80030-8\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021980070800308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021980070800308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

Ryser[3]引入的λ-设计是一个(0,1)平方矩阵,列内积为常数,但并非所有列和都相等。Ryser已经证明了这样一个矩阵有两个行和,他构造了一个无限的λ-设计族,称为h -设计。本文做了三件事:(1)将Ryser的h -设计构造推广到任意的(ν, k, λ)-构型,(2)建立了λ-设计的一些附加的一般性质,(3)确定了所有的4-设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some results on λ-designs

A λ-design as introduced by Ryser [3] is a (0, 1)-square matrix with constant column inner products but not all column sums equal. Ryser has shown such a matrix to have two row sums and he constructs an infinite family of λ-designs called H-designs. This paper does three things: (1) generalizes Ryser's H-design construction to an arbitrary (ν, k, λ)-configuration, (2) establishes some additional general properties of λ-designs, and (3) determines all 4-designs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信