{"title":"一种利用心电图数据的无参考注释的图形化评估工具","authors":"Yu-He Zhang, S. Babaeizadeh","doi":"10.23919/CinC49843.2019.9005552","DOIUrl":null,"url":null,"abstract":"Without reference annotation, statistical metrics such as sensitivity and positive predictive value (PPV) cannot be calculated. Annotating a large ECG database may not be feasible, hence, the interest in developing an evaluation tool that does not require reference annotation. We developed a tool for evaluating key performance attributes (KPA) including arrhythmia detection, heart rate, ST value, and noise tolerance. The tool has three layers of KPA graphics. The top layer includes interactive distribution graphs of the KPA values for aggregated results for the entire database. From this top layer the user can select an individual record to launch interactive trending graphs that display the KPA values, or their discrepancies, for a time span on that particular record. From this second layer the user can identify any KPA value of interest (e.g., a specific arrhythmia label) to view the underlying ECG waveform. Navigating through these three layers, the user is able to quickly confirm the validity of KPA reported by the algorithm. We modified the noise tolerance of an exercise ECG arrhythmia algorithm. Then used this tool to visually verify the resulting improvement on the Telemetric and Holter ECG Warehouse (THEW) stress database E-OTH-12-0927-015. We confirmed the visual verification of improvement by manually annotating a small subset of records in this database.","PeriodicalId":6697,"journal":{"name":"2019 Computing in Cardiology (CinC)","volume":"27 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Graphical Evaluation Tool to Utilize ECG Data Without Reference Annotation\",\"authors\":\"Yu-He Zhang, S. Babaeizadeh\",\"doi\":\"10.23919/CinC49843.2019.9005552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Without reference annotation, statistical metrics such as sensitivity and positive predictive value (PPV) cannot be calculated. Annotating a large ECG database may not be feasible, hence, the interest in developing an evaluation tool that does not require reference annotation. We developed a tool for evaluating key performance attributes (KPA) including arrhythmia detection, heart rate, ST value, and noise tolerance. The tool has three layers of KPA graphics. The top layer includes interactive distribution graphs of the KPA values for aggregated results for the entire database. From this top layer the user can select an individual record to launch interactive trending graphs that display the KPA values, or their discrepancies, for a time span on that particular record. From this second layer the user can identify any KPA value of interest (e.g., a specific arrhythmia label) to view the underlying ECG waveform. Navigating through these three layers, the user is able to quickly confirm the validity of KPA reported by the algorithm. We modified the noise tolerance of an exercise ECG arrhythmia algorithm. Then used this tool to visually verify the resulting improvement on the Telemetric and Holter ECG Warehouse (THEW) stress database E-OTH-12-0927-015. We confirmed the visual verification of improvement by manually annotating a small subset of records in this database.\",\"PeriodicalId\":6697,\"journal\":{\"name\":\"2019 Computing in Cardiology (CinC)\",\"volume\":\"27 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CinC49843.2019.9005552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CinC49843.2019.9005552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Graphical Evaluation Tool to Utilize ECG Data Without Reference Annotation
Without reference annotation, statistical metrics such as sensitivity and positive predictive value (PPV) cannot be calculated. Annotating a large ECG database may not be feasible, hence, the interest in developing an evaluation tool that does not require reference annotation. We developed a tool for evaluating key performance attributes (KPA) including arrhythmia detection, heart rate, ST value, and noise tolerance. The tool has three layers of KPA graphics. The top layer includes interactive distribution graphs of the KPA values for aggregated results for the entire database. From this top layer the user can select an individual record to launch interactive trending graphs that display the KPA values, or their discrepancies, for a time span on that particular record. From this second layer the user can identify any KPA value of interest (e.g., a specific arrhythmia label) to view the underlying ECG waveform. Navigating through these three layers, the user is able to quickly confirm the validity of KPA reported by the algorithm. We modified the noise tolerance of an exercise ECG arrhythmia algorithm. Then used this tool to visually verify the resulting improvement on the Telemetric and Holter ECG Warehouse (THEW) stress database E-OTH-12-0927-015. We confirmed the visual verification of improvement by manually annotating a small subset of records in this database.