基于65nm CMOS的无tdc分数n数字锁相环和数字控制环振荡器

W. Grollitsch, R. Nonis, N. D. Dalt
{"title":"基于65nm CMOS的无tdc分数n数字锁相环和数字控制环振荡器","authors":"W. Grollitsch, R. Nonis, N. D. Dalt","doi":"10.1109/ISSCC.2010.5433839","DOIUrl":null,"url":null,"abstract":"State of the art digital PLLs can be divided in two categories, depending on the implementation of the digital phase detector. Digital clocking and wireline applications mostly use a Bang-Bang detector (BBPLLs) [1–3], offering very low jitter values in integer-N mode but not supporting fractional-N synthesis, which is desirable to implement, i.e., spread spectrum clocking (SSC) for EMI reductions. Wireless applications implement time to digital converters (TDC) [4–6] which allow fractional-N synthesis, but require high architecture complexity, need calibration routines for period normalization, and introduce analog limitations that a digital PLL should be intended to eliminate.","PeriodicalId":6418,"journal":{"name":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","volume":"46 1","pages":"478-479"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"A 1.4psrms-period-jitter TDC-less fractional-N digital PLL with digitally controlled ring oscillator in 65nm CMOS\",\"authors\":\"W. Grollitsch, R. Nonis, N. D. Dalt\",\"doi\":\"10.1109/ISSCC.2010.5433839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State of the art digital PLLs can be divided in two categories, depending on the implementation of the digital phase detector. Digital clocking and wireline applications mostly use a Bang-Bang detector (BBPLLs) [1–3], offering very low jitter values in integer-N mode but not supporting fractional-N synthesis, which is desirable to implement, i.e., spread spectrum clocking (SSC) for EMI reductions. Wireless applications implement time to digital converters (TDC) [4–6] which allow fractional-N synthesis, but require high architecture complexity, need calibration routines for period normalization, and introduce analog limitations that a digital PLL should be intended to eliminate.\",\"PeriodicalId\":6418,\"journal\":{\"name\":\"2010 IEEE International Solid-State Circuits Conference - (ISSCC)\",\"volume\":\"46 1\",\"pages\":\"478-479\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Solid-State Circuits Conference - (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2010.5433839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2010.5433839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

摘要

目前的数字锁相环可以分为两类,这取决于数字鉴相器的实现。数字时钟和有线应用大多使用Bang-Bang检测器(bbpll)[1-3],在整数n模式下提供非常低的抖动值,但不支持分数n合成,这是理想的实现,即用于减少EMI的扩频时钟(SSC)。无线应用实现时间到数字转换器(TDC)[4-6],它允许分数n合成,但需要很高的架构复杂性,需要周期归一化的校准例程,并引入数字锁相环应该消除的模拟限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 1.4psrms-period-jitter TDC-less fractional-N digital PLL with digitally controlled ring oscillator in 65nm CMOS
State of the art digital PLLs can be divided in two categories, depending on the implementation of the digital phase detector. Digital clocking and wireline applications mostly use a Bang-Bang detector (BBPLLs) [1–3], offering very low jitter values in integer-N mode but not supporting fractional-N synthesis, which is desirable to implement, i.e., spread spectrum clocking (SSC) for EMI reductions. Wireless applications implement time to digital converters (TDC) [4–6] which allow fractional-N synthesis, but require high architecture complexity, need calibration routines for period normalization, and introduce analog limitations that a digital PLL should be intended to eliminate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信