板壳结构加劲筋布置设计的启发生长技术

Kai Xue, Lei Li, Q. Li
{"title":"板壳结构加劲筋布置设计的启发生长技术","authors":"Kai Xue, Lei Li, Q. Li","doi":"10.4028/www.scientific.net/JBBTE.18.1","DOIUrl":null,"url":null,"abstract":"A novel design method for stiffener layout of plate and shell structures is proposed in this paper. The method is inspired by the morphogenesis mechanism of dicotyledonous venation which is featured by hierarchy and functional adaptivity. It is expected that a optimal stiffener layout can be gradually achieved if the stiffeners extend by obeying a similar growth rule as the venation. Starting from the so called “seeds”, the stiffeners grow and branch off towards the direction that optimizes the structural performance. And the stiffeners with the minimum effectiveness to the structural performance are degenerated simultaneously. During the design process, the relative density of each element is treated as the design variable. The growth and degeneration of the stiffeners are determined by the nodal and elemental sensitivity numbers respectively. The design algorithm is programmed in Python and integrated with Abaqus software which is used as the FEA preprocessor and solver. To validate the effectiveness of the proposed method, it is applied to design the stiffener layouts of some typical structures with the objective of maximizing the overall stiffness with a volume constraint.","PeriodicalId":15198,"journal":{"name":"Journal of Biomimetics, Biomaterials and Tissue Engineering","volume":"38 1","pages":"1 - 12"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Venation-Inspired Growth Technique for Stiffener Layout Design of Plate and Shell Structures\",\"authors\":\"Kai Xue, Lei Li, Q. Li\",\"doi\":\"10.4028/www.scientific.net/JBBTE.18.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel design method for stiffener layout of plate and shell structures is proposed in this paper. The method is inspired by the morphogenesis mechanism of dicotyledonous venation which is featured by hierarchy and functional adaptivity. It is expected that a optimal stiffener layout can be gradually achieved if the stiffeners extend by obeying a similar growth rule as the venation. Starting from the so called “seeds”, the stiffeners grow and branch off towards the direction that optimizes the structural performance. And the stiffeners with the minimum effectiveness to the structural performance are degenerated simultaneously. During the design process, the relative density of each element is treated as the design variable. The growth and degeneration of the stiffeners are determined by the nodal and elemental sensitivity numbers respectively. The design algorithm is programmed in Python and integrated with Abaqus software which is used as the FEA preprocessor and solver. To validate the effectiveness of the proposed method, it is applied to design the stiffener layouts of some typical structures with the objective of maximizing the overall stiffness with a volume constraint.\",\"PeriodicalId\":15198,\"journal\":{\"name\":\"Journal of Biomimetics, Biomaterials and Tissue Engineering\",\"volume\":\"38 1\",\"pages\":\"1 - 12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomimetics, Biomaterials and Tissue Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/www.scientific.net/JBBTE.18.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Tissue Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/JBBTE.18.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

提出了一种新的板壳结构加劲筋布置方法。该方法的灵感来源于双子叶脉系具有层次性和功能适应性的形态发生机制。如果加劲筋按照与脉脉相似的生长规律进行扩展,则可以逐渐获得最优的加劲筋布局。从所谓的“种子”开始,加强筋朝着优化结构性能的方向生长和分支。对结构性能影响最小的加筋同时发生退化。在设计过程中,将各元素的相对密度作为设计变量。加强筋的生长和退化分别由节点和元素敏感数决定。设计算法采用Python语言编写,并集成Abaqus软件作为有限元预处理器和求解器。为了验证所提方法的有效性,以在体积约束下整体刚度最大化为目标,对一些典型结构进行了加劲肋布置设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Venation-Inspired Growth Technique for Stiffener Layout Design of Plate and Shell Structures
A novel design method for stiffener layout of plate and shell structures is proposed in this paper. The method is inspired by the morphogenesis mechanism of dicotyledonous venation which is featured by hierarchy and functional adaptivity. It is expected that a optimal stiffener layout can be gradually achieved if the stiffeners extend by obeying a similar growth rule as the venation. Starting from the so called “seeds”, the stiffeners grow and branch off towards the direction that optimizes the structural performance. And the stiffeners with the minimum effectiveness to the structural performance are degenerated simultaneously. During the design process, the relative density of each element is treated as the design variable. The growth and degeneration of the stiffeners are determined by the nodal and elemental sensitivity numbers respectively. The design algorithm is programmed in Python and integrated with Abaqus software which is used as the FEA preprocessor and solver. To validate the effectiveness of the proposed method, it is applied to design the stiffener layouts of some typical structures with the objective of maximizing the overall stiffness with a volume constraint.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信