m -度量空间不动点理论的研究

P. M. Bajracharya, N. Adhikari
{"title":"m -度量空间不动点理论的研究","authors":"P. M. Bajracharya, N. Adhikari","doi":"10.3126/sw.v13i13.30541","DOIUrl":null,"url":null,"abstract":"In 2014, Asadi et al.1 introduced the notion of an M− metric space which is the generalization of a partial metric space and establish Banach and Kannan fixed point theorems in M− metric space. In this paper, we give a brief survey regarding the fixed point theorem for Chatterjea contraction mapping in the framework of M− metric space. We also give some examples which support the partial answers to the question posed by Asadi et al. concerning a fixed point for Chatterjea contraction mapping.","PeriodicalId":21637,"journal":{"name":"Scientific World","volume":"40 1","pages":"62-68"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Study on Fixed Point Theory in M-Metric Space\",\"authors\":\"P. M. Bajracharya, N. Adhikari\",\"doi\":\"10.3126/sw.v13i13.30541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2014, Asadi et al.1 introduced the notion of an M− metric space which is the generalization of a partial metric space and establish Banach and Kannan fixed point theorems in M− metric space. In this paper, we give a brief survey regarding the fixed point theorem for Chatterjea contraction mapping in the framework of M− metric space. We also give some examples which support the partial answers to the question posed by Asadi et al. concerning a fixed point for Chatterjea contraction mapping.\",\"PeriodicalId\":21637,\"journal\":{\"name\":\"Scientific World\",\"volume\":\"40 1\",\"pages\":\"62-68\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific World\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3126/sw.v13i13.30541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific World","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/sw.v13i13.30541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

2014年,Asadi et al.1引入了M -度量空间的概念,即偏度量空间的推广,并在M -度量空间中建立了Banach和Kannan不动点定理。本文对M−度量空间框架中Chatterjea收缩映射的不动点定理作了简要的综述。我们还给出了一些例子来支持Asadi等人关于Chatterjea收缩映射的不动点问题的部分答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study on Fixed Point Theory in M-Metric Space
In 2014, Asadi et al.1 introduced the notion of an M− metric space which is the generalization of a partial metric space and establish Banach and Kannan fixed point theorems in M− metric space. In this paper, we give a brief survey regarding the fixed point theorem for Chatterjea contraction mapping in the framework of M− metric space. We also give some examples which support the partial answers to the question posed by Asadi et al. concerning a fixed point for Chatterjea contraction mapping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信