{"title":"m -度量空间不动点理论的研究","authors":"P. M. Bajracharya, N. Adhikari","doi":"10.3126/sw.v13i13.30541","DOIUrl":null,"url":null,"abstract":"In 2014, Asadi et al.1 introduced the notion of an M− metric space which is the generalization of a partial metric space and establish Banach and Kannan fixed point theorems in M− metric space. In this paper, we give a brief survey regarding the fixed point theorem for Chatterjea contraction mapping in the framework of M− metric space. We also give some examples which support the partial answers to the question posed by Asadi et al. concerning a fixed point for Chatterjea contraction mapping.","PeriodicalId":21637,"journal":{"name":"Scientific World","volume":"40 1","pages":"62-68"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Study on Fixed Point Theory in M-Metric Space\",\"authors\":\"P. M. Bajracharya, N. Adhikari\",\"doi\":\"10.3126/sw.v13i13.30541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2014, Asadi et al.1 introduced the notion of an M− metric space which is the generalization of a partial metric space and establish Banach and Kannan fixed point theorems in M− metric space. In this paper, we give a brief survey regarding the fixed point theorem for Chatterjea contraction mapping in the framework of M− metric space. We also give some examples which support the partial answers to the question posed by Asadi et al. concerning a fixed point for Chatterjea contraction mapping.\",\"PeriodicalId\":21637,\"journal\":{\"name\":\"Scientific World\",\"volume\":\"40 1\",\"pages\":\"62-68\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific World\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3126/sw.v13i13.30541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific World","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/sw.v13i13.30541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
2014年,Asadi et al.1引入了M -度量空间的概念,即偏度量空间的推广,并在M -度量空间中建立了Banach和Kannan不动点定理。本文对M−度量空间框架中Chatterjea收缩映射的不动点定理作了简要的综述。我们还给出了一些例子来支持Asadi等人关于Chatterjea收缩映射的不动点问题的部分答案。
In 2014, Asadi et al.1 introduced the notion of an M− metric space which is the generalization of a partial metric space and establish Banach and Kannan fixed point theorems in M− metric space. In this paper, we give a brief survey regarding the fixed point theorem for Chatterjea contraction mapping in the framework of M− metric space. We also give some examples which support the partial answers to the question posed by Asadi et al. concerning a fixed point for Chatterjea contraction mapping.