{"title":"将状态赋予无状态:用分类账增强可信计算","authors":"Gabriel Kaptchuk, M. Green, Ian Miers","doi":"10.14722/ndss.2019.23060","DOIUrl":null,"url":null,"abstract":"In this work we investigate new computational properties that can be achieved by combining stateless trusted devices with public ledgers. We consider a hybrid paradigm in which a client-side device (such as a co-processor or trusted enclave) performs secure computation, while interacting with a public ledger via a possibly malicious host computer. We explore both the constructive and potentially destructive implications of such systems. We first show that this combination allows for the construction of stateful interactive functionalities (including general computation) even when the device has no persistent storage; this allows us to build sophisticated applications using inexpensive trusted hardware or even pure cryptographic obfuscation techniques. We further show how to use this paradigm to achieve censorship-resistant communication with a network, even when network communications are mediated by a potentially malicious host. Finally we describe a number of practical applications that can be achieved today. These include the synchronization of private smart contracts; rate limited mandatory logging; strong encrypted backups from weak passwords; enforcing fairness in multi-party computation; and destructive applications such as autonomous ransomware, which allows for payments without an online party.","PeriodicalId":20444,"journal":{"name":"Proceedings 2019 Network and Distributed System Security Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Giving State to the Stateless: Augmenting Trustworthy Computation with Ledgers\",\"authors\":\"Gabriel Kaptchuk, M. Green, Ian Miers\",\"doi\":\"10.14722/ndss.2019.23060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we investigate new computational properties that can be achieved by combining stateless trusted devices with public ledgers. We consider a hybrid paradigm in which a client-side device (such as a co-processor or trusted enclave) performs secure computation, while interacting with a public ledger via a possibly malicious host computer. We explore both the constructive and potentially destructive implications of such systems. We first show that this combination allows for the construction of stateful interactive functionalities (including general computation) even when the device has no persistent storage; this allows us to build sophisticated applications using inexpensive trusted hardware or even pure cryptographic obfuscation techniques. We further show how to use this paradigm to achieve censorship-resistant communication with a network, even when network communications are mediated by a potentially malicious host. Finally we describe a number of practical applications that can be achieved today. These include the synchronization of private smart contracts; rate limited mandatory logging; strong encrypted backups from weak passwords; enforcing fairness in multi-party computation; and destructive applications such as autonomous ransomware, which allows for payments without an online party.\",\"PeriodicalId\":20444,\"journal\":{\"name\":\"Proceedings 2019 Network and Distributed System Security Symposium\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2019 Network and Distributed System Security Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14722/ndss.2019.23060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2019 Network and Distributed System Security Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14722/ndss.2019.23060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Giving State to the Stateless: Augmenting Trustworthy Computation with Ledgers
In this work we investigate new computational properties that can be achieved by combining stateless trusted devices with public ledgers. We consider a hybrid paradigm in which a client-side device (such as a co-processor or trusted enclave) performs secure computation, while interacting with a public ledger via a possibly malicious host computer. We explore both the constructive and potentially destructive implications of such systems. We first show that this combination allows for the construction of stateful interactive functionalities (including general computation) even when the device has no persistent storage; this allows us to build sophisticated applications using inexpensive trusted hardware or even pure cryptographic obfuscation techniques. We further show how to use this paradigm to achieve censorship-resistant communication with a network, even when network communications are mediated by a potentially malicious host. Finally we describe a number of practical applications that can be achieved today. These include the synchronization of private smart contracts; rate limited mandatory logging; strong encrypted backups from weak passwords; enforcing fairness in multi-party computation; and destructive applications such as autonomous ransomware, which allows for payments without an online party.