基于一阶相变的加热装置研究

Yurii Podenezhko, M. Kirichenko, N. Chepurna, Volodymyr Chepurnyі
{"title":"基于一阶相变的加热装置研究","authors":"Yurii Podenezhko, M. Kirichenko, N. Chepurna, Volodymyr Chepurnyі","doi":"10.32347/2409-2606.2019.31.63-70","DOIUrl":null,"url":null,"abstract":"New developments aimed at saving costs for heating a house are attracting more and more attention. The development of highly efficient heating radiators that meet the requirements of modern engineering systems, namely: cost-effectiveness, efficiency, rapid uniform heating of the entire surface, ease of installation and operation, low manufacturing costs and durability is the main direction in the design of heating devices. In recent years, the use of heating radiators based on first-order phase transition has been gaining ground in heating systems in Ukrainian cities. In the literature and on the Internet resource s , there is another name for such kind of the radiators – vacuum radiators. T hey were named because air was completely pumped out of the internal cavity of the sectional structure. This is done in order to reduce the pressure and, accordingly, reduce the evaporation temperature of the secondary coolant. These are ordinary heating appliances externally, but completely different in principle of operation. In fact, the operation of the vacuum radiator is built on the principle of functioning of a sealed two-phase thermosiphon. The main advantage of such solution is the unique coolant circulation system. They can be used both for heating systems and for autonomous ones. There are conflicting opinions about the advisability of using vacuum radiators, so their confirmation or refutation requires in-depth research. This paper presents the results of experimental studies of a heating radiator based on first-order phase transition. As a secondary coolant, a liquid with a low boiling point is used. The principles of operation of the heating device are investigated, thermal capacities are determined at various temperatures of the coolant. A comparison is made with traditional steel and aluminum radiators, . Particular attention was paid to the study of vacuum radiators from the point of view of heat exchange, and their unusual properties were noted. The main advantages and disadvantages of this heating device are revealed. The ways of further research of these types of heating radiators are indicated.","PeriodicalId":23499,"journal":{"name":"Ventilation, Illumination and Heat Gas Supply","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Heating Devices Based on a First-Order Phase Transition\",\"authors\":\"Yurii Podenezhko, M. Kirichenko, N. Chepurna, Volodymyr Chepurnyі\",\"doi\":\"10.32347/2409-2606.2019.31.63-70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New developments aimed at saving costs for heating a house are attracting more and more attention. The development of highly efficient heating radiators that meet the requirements of modern engineering systems, namely: cost-effectiveness, efficiency, rapid uniform heating of the entire surface, ease of installation and operation, low manufacturing costs and durability is the main direction in the design of heating devices. In recent years, the use of heating radiators based on first-order phase transition has been gaining ground in heating systems in Ukrainian cities. In the literature and on the Internet resource s , there is another name for such kind of the radiators – vacuum radiators. T hey were named because air was completely pumped out of the internal cavity of the sectional structure. This is done in order to reduce the pressure and, accordingly, reduce the evaporation temperature of the secondary coolant. These are ordinary heating appliances externally, but completely different in principle of operation. In fact, the operation of the vacuum radiator is built on the principle of functioning of a sealed two-phase thermosiphon. The main advantage of such solution is the unique coolant circulation system. They can be used both for heating systems and for autonomous ones. There are conflicting opinions about the advisability of using vacuum radiators, so their confirmation or refutation requires in-depth research. This paper presents the results of experimental studies of a heating radiator based on first-order phase transition. As a secondary coolant, a liquid with a low boiling point is used. The principles of operation of the heating device are investigated, thermal capacities are determined at various temperatures of the coolant. A comparison is made with traditional steel and aluminum radiators, . Particular attention was paid to the study of vacuum radiators from the point of view of heat exchange, and their unusual properties were noted. The main advantages and disadvantages of this heating device are revealed. The ways of further research of these types of heating radiators are indicated.\",\"PeriodicalId\":23499,\"journal\":{\"name\":\"Ventilation, Illumination and Heat Gas Supply\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ventilation, Illumination and Heat Gas Supply\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32347/2409-2606.2019.31.63-70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ventilation, Illumination and Heat Gas Supply","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32347/2409-2606.2019.31.63-70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of Heating Devices Based on a First-Order Phase Transition
New developments aimed at saving costs for heating a house are attracting more and more attention. The development of highly efficient heating radiators that meet the requirements of modern engineering systems, namely: cost-effectiveness, efficiency, rapid uniform heating of the entire surface, ease of installation and operation, low manufacturing costs and durability is the main direction in the design of heating devices. In recent years, the use of heating radiators based on first-order phase transition has been gaining ground in heating systems in Ukrainian cities. In the literature and on the Internet resource s , there is another name for such kind of the radiators – vacuum radiators. T hey were named because air was completely pumped out of the internal cavity of the sectional structure. This is done in order to reduce the pressure and, accordingly, reduce the evaporation temperature of the secondary coolant. These are ordinary heating appliances externally, but completely different in principle of operation. In fact, the operation of the vacuum radiator is built on the principle of functioning of a sealed two-phase thermosiphon. The main advantage of such solution is the unique coolant circulation system. They can be used both for heating systems and for autonomous ones. There are conflicting opinions about the advisability of using vacuum radiators, so their confirmation or refutation requires in-depth research. This paper presents the results of experimental studies of a heating radiator based on first-order phase transition. As a secondary coolant, a liquid with a low boiling point is used. The principles of operation of the heating device are investigated, thermal capacities are determined at various temperatures of the coolant. A comparison is made with traditional steel and aluminum radiators, . Particular attention was paid to the study of vacuum radiators from the point of view of heat exchange, and their unusual properties were noted. The main advantages and disadvantages of this heating device are revealed. The ways of further research of these types of heating radiators are indicated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信