水溶性C60/聚n -乙烯基吡咯烷酮配合物的生物活性研究

N. Loginova, Yu. S. Chesovskikh, V. B. Borodulin
{"title":"水溶性C60/聚n -乙烯基吡咯烷酮配合物的生物活性研究","authors":"N. Loginova, Yu. S. Chesovskikh, V. B. Borodulin","doi":"10.32362/2410-6593-2022-17-6-492-503","DOIUrl":null,"url":null,"abstract":"Objectives. The study aimed to investigate the biological activity of the C60/poly-N-vinylpyrrolidone (C60/PVP) complex representing a water-soluble fullerene derivative. In vitro and in vivo techniques were used to analyze the effect of the C60/PVP complex on the activity of lactate dehydrogenase (LDH) and evaluate changes in the biochemical parameters of blood serum when per os administered to mice.Methods. In order to determine the activity of a commercial LDH preparation and study the kinetics of this process, the standard Warburg photometric method was used. To assess the effect of polyvinylpyrrolidone (PVP) and the C60/PVP complex on some biochemical parameters in vivo, a study was conducted on two-month-old male white mongrel mice weighing 20 ± 3 g. Determination of biochemical parameters of blood serum was carried out using a semi-automatic biochemical analyzer according to standard methods.Results. The effect of the C60/PVP complex on LDH activity was studied along with changes in the biochemical parameters of mouse blood serum characterizing carbohydrate metabolism. As well as increasing the glucose and pyruvic acid content, the C60/PVP complex was found to reduce lactate content and LDH activity in blood serum along with in vitro LDH activity according to the type of mixed inhibition.Conclusions. The C60/PVP complex and PVP were shown to exhibit biological activity in vitro and in vivo. The C60/PVP complex, representing a mixed-type LDH inhibitor, was shown to inhibit LDH activity, as well as contributing to a decrease in lactate concentration and an increase in the concentration of pyruvic acid and glucose in blood serum when administered per os to mice. The inhibitory effect of PVP on LDH activity was revealed in both in vivo and in vitro investigations. In vivo, PVP contributes to a decrease in the concentration of lactate in the blood. The less pronounced effect of the C60/PVP complex as compared to PVP alone may be due to the fact that C60 molecules are “hidden” in cavities formed in PVP molecules.","PeriodicalId":12215,"journal":{"name":"Fine Chemical Technologies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the biological activity of the water-soluble C60/poly-N-vinylpyrrolidone complex\",\"authors\":\"N. Loginova, Yu. S. Chesovskikh, V. B. Borodulin\",\"doi\":\"10.32362/2410-6593-2022-17-6-492-503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objectives. The study aimed to investigate the biological activity of the C60/poly-N-vinylpyrrolidone (C60/PVP) complex representing a water-soluble fullerene derivative. In vitro and in vivo techniques were used to analyze the effect of the C60/PVP complex on the activity of lactate dehydrogenase (LDH) and evaluate changes in the biochemical parameters of blood serum when per os administered to mice.Methods. In order to determine the activity of a commercial LDH preparation and study the kinetics of this process, the standard Warburg photometric method was used. To assess the effect of polyvinylpyrrolidone (PVP) and the C60/PVP complex on some biochemical parameters in vivo, a study was conducted on two-month-old male white mongrel mice weighing 20 ± 3 g. Determination of biochemical parameters of blood serum was carried out using a semi-automatic biochemical analyzer according to standard methods.Results. The effect of the C60/PVP complex on LDH activity was studied along with changes in the biochemical parameters of mouse blood serum characterizing carbohydrate metabolism. As well as increasing the glucose and pyruvic acid content, the C60/PVP complex was found to reduce lactate content and LDH activity in blood serum along with in vitro LDH activity according to the type of mixed inhibition.Conclusions. The C60/PVP complex and PVP were shown to exhibit biological activity in vitro and in vivo. The C60/PVP complex, representing a mixed-type LDH inhibitor, was shown to inhibit LDH activity, as well as contributing to a decrease in lactate concentration and an increase in the concentration of pyruvic acid and glucose in blood serum when administered per os to mice. The inhibitory effect of PVP on LDH activity was revealed in both in vivo and in vitro investigations. In vivo, PVP contributes to a decrease in the concentration of lactate in the blood. The less pronounced effect of the C60/PVP complex as compared to PVP alone may be due to the fact that C60 molecules are “hidden” in cavities formed in PVP molecules.\",\"PeriodicalId\":12215,\"journal\":{\"name\":\"Fine Chemical Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fine Chemical Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32362/2410-6593-2022-17-6-492-503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fine Chemical Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32362/2410-6593-2022-17-6-492-503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目标。研究了水溶性富勒烯衍生物C60/聚n -乙烯基吡咯烷酮(C60/PVP)配合物的生物活性。采用体外和体内技术分析C60/PVP复合物对小鼠乳酸脱氢酶(LDH)活性的影响,并评价其对小鼠血清生化指标的影响。为了确定商业LDH制剂的活性并研究该过程的动力学,采用了标准的Warburg光度法。为了研究聚乙烯吡咯烷酮(PVP)和C60/PVP复合物对体内生化指标的影响,以体重20±3 g的2月龄雄性白杂种小鼠为实验对象。采用半自动生化分析仪,按标准方法测定血清生化参数。研究了C60/PVP复合物对LDH活性的影响以及表征小鼠碳水化合物代谢的血清生化参数的变化。C60/PVP复合物在提高葡萄糖和丙酮酸含量的同时,降低血清乳酸含量和LDH活性,体外LDH活性呈混合型抑制。C60/PVP复合物和PVP在体外和体内均表现出生物活性。C60/PVP复合物是一种混合型LDH抑制剂,被证明可以抑制LDH活性,并有助于降低小鼠血清乳酸浓度,增加血清丙酮酸和葡萄糖浓度。PVP对乳酸脱氢酶活性的抑制作用在体内和体外均得到了证实。在体内,PVP有助于降低血液中乳酸的浓度。与PVP相比,C60/PVP复合物的效果不那么明显,这可能是因为C60分子“隐藏”在PVP分子形成的空腔中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of the biological activity of the water-soluble C60/poly-N-vinylpyrrolidone complex
Objectives. The study aimed to investigate the biological activity of the C60/poly-N-vinylpyrrolidone (C60/PVP) complex representing a water-soluble fullerene derivative. In vitro and in vivo techniques were used to analyze the effect of the C60/PVP complex on the activity of lactate dehydrogenase (LDH) and evaluate changes in the biochemical parameters of blood serum when per os administered to mice.Methods. In order to determine the activity of a commercial LDH preparation and study the kinetics of this process, the standard Warburg photometric method was used. To assess the effect of polyvinylpyrrolidone (PVP) and the C60/PVP complex on some biochemical parameters in vivo, a study was conducted on two-month-old male white mongrel mice weighing 20 ± 3 g. Determination of biochemical parameters of blood serum was carried out using a semi-automatic biochemical analyzer according to standard methods.Results. The effect of the C60/PVP complex on LDH activity was studied along with changes in the biochemical parameters of mouse blood serum characterizing carbohydrate metabolism. As well as increasing the glucose and pyruvic acid content, the C60/PVP complex was found to reduce lactate content and LDH activity in blood serum along with in vitro LDH activity according to the type of mixed inhibition.Conclusions. The C60/PVP complex and PVP were shown to exhibit biological activity in vitro and in vivo. The C60/PVP complex, representing a mixed-type LDH inhibitor, was shown to inhibit LDH activity, as well as contributing to a decrease in lactate concentration and an increase in the concentration of pyruvic acid and glucose in blood serum when administered per os to mice. The inhibitory effect of PVP on LDH activity was revealed in both in vivo and in vitro investigations. In vivo, PVP contributes to a decrease in the concentration of lactate in the blood. The less pronounced effect of the C60/PVP complex as compared to PVP alone may be due to the fact that C60 molecules are “hidden” in cavities formed in PVP molecules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信