δss补充模块和环

IF 0.8 4区 数学 Q2 MATHEMATICS
B. Türkmen, E. Türkmen
{"title":"δss补充模块和环","authors":"B. Türkmen, E. Türkmen","doi":"10.2478/auom-2020-0041","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we introduce the concept of δss-supplemented modules and provide the various properties of these modules. In particular, we prove that a ring R is δss-supplemented as a left module if and only if RSoc(RR) {R \\over {Soc\\left( {_RR} \\right)}} is semisimple and idempotents lift to Soc(RR) if and only if every left R-module is δss-supplemented. We define projective δss-covers and prove the rings with the property that every (simple) module has a projective δss-cover are δss-supplemented. We also study on δss-supplement submodules.","PeriodicalId":55522,"journal":{"name":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","volume":"76 1","pages":"193 - 216"},"PeriodicalIF":0.8000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"δss-supplemented modules and rings\",\"authors\":\"B. Türkmen, E. Türkmen\",\"doi\":\"10.2478/auom-2020-0041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we introduce the concept of δss-supplemented modules and provide the various properties of these modules. In particular, we prove that a ring R is δss-supplemented as a left module if and only if RSoc(RR) {R \\\\over {Soc\\\\left( {_RR} \\\\right)}} is semisimple and idempotents lift to Soc(RR) if and only if every left R-module is δss-supplemented. We define projective δss-covers and prove the rings with the property that every (simple) module has a projective δss-cover are δss-supplemented. We also study on δss-supplement submodules.\",\"PeriodicalId\":55522,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"volume\":\"76 1\",\"pages\":\"193 - 216\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2020-0041\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2020-0041","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了δss补充模块的概念,并给出了这些模块的各种特性。特别地,我们证明了当且仅当RSoc(RR) {R \ / {Soc\左({_RR} \右)}}是半简单的,且当且仅当每个左R模都是δss补充时,环R是δss补充的左模,幂等升为Soc(RR)。我们定义了射影δss-盖,并证明了每个(简单)模都有一个射影δss-盖的环是δss-补环。我们还研究了δ - ss补子模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
δss-supplemented modules and rings
Abstract In this paper, we introduce the concept of δss-supplemented modules and provide the various properties of these modules. In particular, we prove that a ring R is δss-supplemented as a left module if and only if RSoc(RR) {R \over {Soc\left( {_RR} \right)}} is semisimple and idempotents lift to Soc(RR) if and only if every left R-module is δss-supplemented. We define projective δss-covers and prove the rings with the property that every (simple) module has a projective δss-cover are δss-supplemented. We also study on δss-supplement submodules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
15
审稿时长
6-12 weeks
期刊介绍: This journal is founded by Mirela Stefanescu and Silviu Sburlan in 1993 and is devoted to pure and applied mathematics. Published by Faculty of Mathematics and Computer Science, Ovidius University, Constanta, Romania.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信