{"title":"带r-Lah系数的多项式的调和数恒等式","authors":"L. Kargin, M. Can","doi":"10.5802/CRMATH.53","DOIUrl":null,"url":null,"abstract":"In this paper, polynomials whose coefficients involve r -Lah numbers are used to evaluate several summation formulae involving binomial coefficients, Stirling numbers, harmonic or hyperharmonic numbers. Moreover, skew-hyperharmonic number is introduced and its basic properties are investigated. Résumé. Dans cet article, des polynômes à coefficients faisant intervenir les nombres r -Lah sont utilisés pour établir plusieurs formules de sommation en fonction des coefficients binomiaux, des nombres de Stirling et des nombres harmoniques ou hyper-harmoniques. De plus, nous introduisons le nombre asymétriquehyper-harmonique et nous étudions ses propriétés de base. 2020 Mathematics Subject Classification. 11B75, 11B68, 47E05, 11B73, 11B83. Manuscript received 5th February 2020, revised 18th April 2020, accepted 19th April 2020.","PeriodicalId":10620,"journal":{"name":"Comptes Rendus Mathematique","volume":"14 1","pages":"535-550"},"PeriodicalIF":0.8000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Harmonic number identities via polynomials with r-Lah coefficients\",\"authors\":\"L. Kargin, M. Can\",\"doi\":\"10.5802/CRMATH.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, polynomials whose coefficients involve r -Lah numbers are used to evaluate several summation formulae involving binomial coefficients, Stirling numbers, harmonic or hyperharmonic numbers. Moreover, skew-hyperharmonic number is introduced and its basic properties are investigated. Résumé. Dans cet article, des polynômes à coefficients faisant intervenir les nombres r -Lah sont utilisés pour établir plusieurs formules de sommation en fonction des coefficients binomiaux, des nombres de Stirling et des nombres harmoniques ou hyper-harmoniques. De plus, nous introduisons le nombre asymétriquehyper-harmonique et nous étudions ses propriétés de base. 2020 Mathematics Subject Classification. 11B75, 11B68, 47E05, 11B73, 11B83. Manuscript received 5th February 2020, revised 18th April 2020, accepted 19th April 2020.\",\"PeriodicalId\":10620,\"journal\":{\"name\":\"Comptes Rendus Mathematique\",\"volume\":\"14 1\",\"pages\":\"535-550\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Mathematique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/CRMATH.53\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mathematique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/CRMATH.53","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Harmonic number identities via polynomials with r-Lah coefficients
In this paper, polynomials whose coefficients involve r -Lah numbers are used to evaluate several summation formulae involving binomial coefficients, Stirling numbers, harmonic or hyperharmonic numbers. Moreover, skew-hyperharmonic number is introduced and its basic properties are investigated. Résumé. Dans cet article, des polynômes à coefficients faisant intervenir les nombres r -Lah sont utilisés pour établir plusieurs formules de sommation en fonction des coefficients binomiaux, des nombres de Stirling et des nombres harmoniques ou hyper-harmoniques. De plus, nous introduisons le nombre asymétriquehyper-harmonique et nous étudions ses propriétés de base. 2020 Mathematics Subject Classification. 11B75, 11B68, 47E05, 11B73, 11B83. Manuscript received 5th February 2020, revised 18th April 2020, accepted 19th April 2020.
期刊介绍:
The Comptes Rendus - Mathématique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, …
Articles are original notes that briefly describe an important discovery or result. The articles are written in French or English.
The journal also publishes review papers, thematic issues and texts reflecting the activity of Académie des sciences in the field of Mathematics.