{"title":"带r-Lah系数的多项式的调和数恒等式","authors":"L. Kargin, M. Can","doi":"10.5802/CRMATH.53","DOIUrl":null,"url":null,"abstract":"In this paper, polynomials whose coefficients involve r -Lah numbers are used to evaluate several summation formulae involving binomial coefficients, Stirling numbers, harmonic or hyperharmonic numbers. Moreover, skew-hyperharmonic number is introduced and its basic properties are investigated. Résumé. Dans cet article, des polynômes à coefficients faisant intervenir les nombres r -Lah sont utilisés pour établir plusieurs formules de sommation en fonction des coefficients binomiaux, des nombres de Stirling et des nombres harmoniques ou hyper-harmoniques. De plus, nous introduisons le nombre asymétriquehyper-harmonique et nous étudions ses propriétés de base. 2020 Mathematics Subject Classification. 11B75, 11B68, 47E05, 11B73, 11B83. Manuscript received 5th February 2020, revised 18th April 2020, accepted 19th April 2020.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Harmonic number identities via polynomials with r-Lah coefficients\",\"authors\":\"L. Kargin, M. Can\",\"doi\":\"10.5802/CRMATH.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, polynomials whose coefficients involve r -Lah numbers are used to evaluate several summation formulae involving binomial coefficients, Stirling numbers, harmonic or hyperharmonic numbers. Moreover, skew-hyperharmonic number is introduced and its basic properties are investigated. Résumé. Dans cet article, des polynômes à coefficients faisant intervenir les nombres r -Lah sont utilisés pour établir plusieurs formules de sommation en fonction des coefficients binomiaux, des nombres de Stirling et des nombres harmoniques ou hyper-harmoniques. De plus, nous introduisons le nombre asymétriquehyper-harmonique et nous étudions ses propriétés de base. 2020 Mathematics Subject Classification. 11B75, 11B68, 47E05, 11B73, 11B83. Manuscript received 5th February 2020, revised 18th April 2020, accepted 19th April 2020.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/CRMATH.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/CRMATH.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Harmonic number identities via polynomials with r-Lah coefficients
In this paper, polynomials whose coefficients involve r -Lah numbers are used to evaluate several summation formulae involving binomial coefficients, Stirling numbers, harmonic or hyperharmonic numbers. Moreover, skew-hyperharmonic number is introduced and its basic properties are investigated. Résumé. Dans cet article, des polynômes à coefficients faisant intervenir les nombres r -Lah sont utilisés pour établir plusieurs formules de sommation en fonction des coefficients binomiaux, des nombres de Stirling et des nombres harmoniques ou hyper-harmoniques. De plus, nous introduisons le nombre asymétriquehyper-harmonique et nous étudions ses propriétés de base. 2020 Mathematics Subject Classification. 11B75, 11B68, 47E05, 11B73, 11B83. Manuscript received 5th February 2020, revised 18th April 2020, accepted 19th April 2020.