Qian-qian Li, Cheng-shuo Wu, B. Qian, Peng Wu, Bin Huang, Dazhuan Wu
{"title":"蓄热式流泵叶轮与流道匹配关系的研究","authors":"Qian-qian Li, Cheng-shuo Wu, B. Qian, Peng Wu, Bin Huang, Dazhuan Wu","doi":"10.1115/1.4050009","DOIUrl":null,"url":null,"abstract":"\n As a specific radial flow pump, the regenerative flow pump (RFP) usually has a low efficiency. In this study, in order to explore the matching mechanism, three cases with various matching relations were investigated by the methods of theoretical calculation, computational fluids dynamics (CFD) simulation, and experiment test. The results illustrate that the theoretical prediction, numerical simulation, and experimental data are in good agreement. Furthermore, when the matching relation expressed by a ratio of the channel's and blade's radial length is equal to 1, the geometrical profiles of RFP can well guide the circulation flow into the channel at large radii and into the impeller at small radii, forming intense longitudinal vortex. The steady, strong exchange flow is characterized by the inflow and outflow regions approximately half of the isosurface. The axial vortex motion without apparent flow separation and irregular flow is observed in the impeller, a low velocity annulus exists in the medium radii of the impeller without other distinct velocity clouds, and a low velocity strip and a high velocity annulus in the channel are, respectively, performed along the blade's pressure surface and the channel's outer radii. All of this corresponds to the best pump's performance and the largest efficiency of the impeller and channel. This work promotes a systematical understanding of the matching mechanism between impeller and flow channel in the RFP and could provide some reference for the design and performance optimization for RFP.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the Matching Relation Between Impeller and Flow Channel of Regenerative Flow Pumps\",\"authors\":\"Qian-qian Li, Cheng-shuo Wu, B. Qian, Peng Wu, Bin Huang, Dazhuan Wu\",\"doi\":\"10.1115/1.4050009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n As a specific radial flow pump, the regenerative flow pump (RFP) usually has a low efficiency. In this study, in order to explore the matching mechanism, three cases with various matching relations were investigated by the methods of theoretical calculation, computational fluids dynamics (CFD) simulation, and experiment test. The results illustrate that the theoretical prediction, numerical simulation, and experimental data are in good agreement. Furthermore, when the matching relation expressed by a ratio of the channel's and blade's radial length is equal to 1, the geometrical profiles of RFP can well guide the circulation flow into the channel at large radii and into the impeller at small radii, forming intense longitudinal vortex. The steady, strong exchange flow is characterized by the inflow and outflow regions approximately half of the isosurface. The axial vortex motion without apparent flow separation and irregular flow is observed in the impeller, a low velocity annulus exists in the medium radii of the impeller without other distinct velocity clouds, and a low velocity strip and a high velocity annulus in the channel are, respectively, performed along the blade's pressure surface and the channel's outer radii. All of this corresponds to the best pump's performance and the largest efficiency of the impeller and channel. This work promotes a systematical understanding of the matching mechanism between impeller and flow channel in the RFP and could provide some reference for the design and performance optimization for RFP.\",\"PeriodicalId\":54833,\"journal\":{\"name\":\"Journal of Fluids Engineering-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4050009\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4050009","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Investigation of the Matching Relation Between Impeller and Flow Channel of Regenerative Flow Pumps
As a specific radial flow pump, the regenerative flow pump (RFP) usually has a low efficiency. In this study, in order to explore the matching mechanism, three cases with various matching relations were investigated by the methods of theoretical calculation, computational fluids dynamics (CFD) simulation, and experiment test. The results illustrate that the theoretical prediction, numerical simulation, and experimental data are in good agreement. Furthermore, when the matching relation expressed by a ratio of the channel's and blade's radial length is equal to 1, the geometrical profiles of RFP can well guide the circulation flow into the channel at large radii and into the impeller at small radii, forming intense longitudinal vortex. The steady, strong exchange flow is characterized by the inflow and outflow regions approximately half of the isosurface. The axial vortex motion without apparent flow separation and irregular flow is observed in the impeller, a low velocity annulus exists in the medium radii of the impeller without other distinct velocity clouds, and a low velocity strip and a high velocity annulus in the channel are, respectively, performed along the blade's pressure surface and the channel's outer radii. All of this corresponds to the best pump's performance and the largest efficiency of the impeller and channel. This work promotes a systematical understanding of the matching mechanism between impeller and flow channel in the RFP and could provide some reference for the design and performance optimization for RFP.
期刊介绍:
Multiphase flows; Pumps; Aerodynamics; Boundary layers; Bubbly flows; Cavitation; Compressible flows; Convective heat/mass transfer as it is affected by fluid flow; Duct and pipe flows; Free shear layers; Flows in biological systems; Fluid-structure interaction; Fluid transients and wave motion; Jets; Naval hydrodynamics; Sprays; Stability and transition; Turbulence wakes microfluidics and other fundamental/applied fluid mechanical phenomena and processes