蓄热式流泵叶轮与流道匹配关系的研究

IF 1.8 3区 工程技术 Q3 ENGINEERING, MECHANICAL
Qian-qian Li, Cheng-shuo Wu, B. Qian, Peng Wu, Bin Huang, Dazhuan Wu
{"title":"蓄热式流泵叶轮与流道匹配关系的研究","authors":"Qian-qian Li, Cheng-shuo Wu, B. Qian, Peng Wu, Bin Huang, Dazhuan Wu","doi":"10.1115/1.4050009","DOIUrl":null,"url":null,"abstract":"\n As a specific radial flow pump, the regenerative flow pump (RFP) usually has a low efficiency. In this study, in order to explore the matching mechanism, three cases with various matching relations were investigated by the methods of theoretical calculation, computational fluids dynamics (CFD) simulation, and experiment test. The results illustrate that the theoretical prediction, numerical simulation, and experimental data are in good agreement. Furthermore, when the matching relation expressed by a ratio of the channel's and blade's radial length is equal to 1, the geometrical profiles of RFP can well guide the circulation flow into the channel at large radii and into the impeller at small radii, forming intense longitudinal vortex. The steady, strong exchange flow is characterized by the inflow and outflow regions approximately half of the isosurface. The axial vortex motion without apparent flow separation and irregular flow is observed in the impeller, a low velocity annulus exists in the medium radii of the impeller without other distinct velocity clouds, and a low velocity strip and a high velocity annulus in the channel are, respectively, performed along the blade's pressure surface and the channel's outer radii. All of this corresponds to the best pump's performance and the largest efficiency of the impeller and channel. This work promotes a systematical understanding of the matching mechanism between impeller and flow channel in the RFP and could provide some reference for the design and performance optimization for RFP.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the Matching Relation Between Impeller and Flow Channel of Regenerative Flow Pumps\",\"authors\":\"Qian-qian Li, Cheng-shuo Wu, B. Qian, Peng Wu, Bin Huang, Dazhuan Wu\",\"doi\":\"10.1115/1.4050009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n As a specific radial flow pump, the regenerative flow pump (RFP) usually has a low efficiency. In this study, in order to explore the matching mechanism, three cases with various matching relations were investigated by the methods of theoretical calculation, computational fluids dynamics (CFD) simulation, and experiment test. The results illustrate that the theoretical prediction, numerical simulation, and experimental data are in good agreement. Furthermore, when the matching relation expressed by a ratio of the channel's and blade's radial length is equal to 1, the geometrical profiles of RFP can well guide the circulation flow into the channel at large radii and into the impeller at small radii, forming intense longitudinal vortex. The steady, strong exchange flow is characterized by the inflow and outflow regions approximately half of the isosurface. The axial vortex motion without apparent flow separation and irregular flow is observed in the impeller, a low velocity annulus exists in the medium radii of the impeller without other distinct velocity clouds, and a low velocity strip and a high velocity annulus in the channel are, respectively, performed along the blade's pressure surface and the channel's outer radii. All of this corresponds to the best pump's performance and the largest efficiency of the impeller and channel. This work promotes a systematical understanding of the matching mechanism between impeller and flow channel in the RFP and could provide some reference for the design and performance optimization for RFP.\",\"PeriodicalId\":54833,\"journal\":{\"name\":\"Journal of Fluids Engineering-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4050009\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4050009","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

再生流泵作为一种特定的径向流泵,其效率通常较低。本研究通过理论计算、计算流体动力学(CFD)模拟和实验测试三种方法,对具有不同匹配关系的三种情况进行了研究,以探索其匹配机理。结果表明,理论预测、数值模拟和实验数据吻合较好。当通道与叶片径向长度之比表示的匹配关系为1时,RFP的几何轮廓可以很好地引导大半径通道内的循环流,小半径叶轮内的循环流,形成强烈的纵向涡。稳定的强交换流的特征是流入和流出区域约占等值面的一半。叶轮内存在轴向涡运动,没有明显的流动分离和不规则流动,叶轮中半径存在低速环空,没有其他明显的速度云,通道内沿叶片压力面和通道外半径分别存在低速带和高速环空。这一切都对应着泵的最佳性能和叶轮和通道的最大效率。本文的工作有助于系统地了解RFP中叶轮与流道的匹配机理,为RFP的设计和性能优化提供一定的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of the Matching Relation Between Impeller and Flow Channel of Regenerative Flow Pumps
As a specific radial flow pump, the regenerative flow pump (RFP) usually has a low efficiency. In this study, in order to explore the matching mechanism, three cases with various matching relations were investigated by the methods of theoretical calculation, computational fluids dynamics (CFD) simulation, and experiment test. The results illustrate that the theoretical prediction, numerical simulation, and experimental data are in good agreement. Furthermore, when the matching relation expressed by a ratio of the channel's and blade's radial length is equal to 1, the geometrical profiles of RFP can well guide the circulation flow into the channel at large radii and into the impeller at small radii, forming intense longitudinal vortex. The steady, strong exchange flow is characterized by the inflow and outflow regions approximately half of the isosurface. The axial vortex motion without apparent flow separation and irregular flow is observed in the impeller, a low velocity annulus exists in the medium radii of the impeller without other distinct velocity clouds, and a low velocity strip and a high velocity annulus in the channel are, respectively, performed along the blade's pressure surface and the channel's outer radii. All of this corresponds to the best pump's performance and the largest efficiency of the impeller and channel. This work promotes a systematical understanding of the matching mechanism between impeller and flow channel in the RFP and could provide some reference for the design and performance optimization for RFP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
10.00%
发文量
165
审稿时长
5.0 months
期刊介绍: Multiphase flows; Pumps; Aerodynamics; Boundary layers; Bubbly flows; Cavitation; Compressible flows; Convective heat/mass transfer as it is affected by fluid flow; Duct and pipe flows; Free shear layers; Flows in biological systems; Fluid-structure interaction; Fluid transients and wave motion; Jets; Naval hydrodynamics; Sprays; Stability and transition; Turbulence wakes microfluidics and other fundamental/applied fluid mechanical phenomena and processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信