{"title":"表面和膜积分上不可分解的$K_1$类","authors":"Xi Chen, James D. Lewis, G. Pearlstein","doi":"10.5802/crmath.69","DOIUrl":null,"url":null,"abstract":"Let X be a projective algebraic surface. We recall the K -group K (2) 1,ind(X ) of indecomposables and provide evidence that membrane integrals are sufficient to detect these indecomposable classes. Résumé. Soit X une surface algébrique projective. Nous rappelons le groupe K , K (2) 1,ind(X ) indécomposables et apporter la preuve que les intégrales membranaires sont suffisantes pour détecter ces classes indécomposables. 2020 Mathematics Subject Classification. 14C25, 14C30, 14C35. Funding. X. Chen and J. D. Lewis partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada. Manuscript received 9th December 2019, accepted 7th May 2020.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indecomposable $K_1$ classes on a Surface and Membrane Integrals\",\"authors\":\"Xi Chen, James D. Lewis, G. Pearlstein\",\"doi\":\"10.5802/crmath.69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let X be a projective algebraic surface. We recall the K -group K (2) 1,ind(X ) of indecomposables and provide evidence that membrane integrals are sufficient to detect these indecomposable classes. Résumé. Soit X une surface algébrique projective. Nous rappelons le groupe K , K (2) 1,ind(X ) indécomposables et apporter la preuve que les intégrales membranaires sont suffisantes pour détecter ces classes indécomposables. 2020 Mathematics Subject Classification. 14C25, 14C30, 14C35. Funding. X. Chen and J. D. Lewis partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada. Manuscript received 9th December 2019, accepted 7th May 2020.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/crmath.69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/crmath.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设X是一个射影代数曲面。我们回顾了不可分解物的K -族K(2) 1,和(X),并提供了证据,证明膜积分足以检测这些不可分解物。的简历。因此,X是一个曲面,它是可变的。K组,K(2) 1,和(X)组的可组合材料和appoter组的可组合材料有两个不同的类别,即不同类型的可组合材料和不同类型的可组合材料。2020数学学科分类。14C25, 14C30, 14C35。资金。X. Chen和J. D. Lewis得到加拿大自然科学与工程研究委员会的部分资助。收稿日期2019年12月9日,收稿日期2020年5月7日。
Indecomposable $K_1$ classes on a Surface and Membrane Integrals
Let X be a projective algebraic surface. We recall the K -group K (2) 1,ind(X ) of indecomposables and provide evidence that membrane integrals are sufficient to detect these indecomposable classes. Résumé. Soit X une surface algébrique projective. Nous rappelons le groupe K , K (2) 1,ind(X ) indécomposables et apporter la preuve que les intégrales membranaires sont suffisantes pour détecter ces classes indécomposables. 2020 Mathematics Subject Classification. 14C25, 14C30, 14C35. Funding. X. Chen and J. D. Lewis partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada. Manuscript received 9th December 2019, accepted 7th May 2020.