时间分数阶欧拉-伯努利梁方程的反问题

IF 1.6 3区 数学 Q1 MATHEMATICS
I. Tekin, He Yang
{"title":"时间分数阶欧拉-伯努利梁方程的反问题","authors":"I. Tekin, He Yang","doi":"10.3846/mma.2021.13289","DOIUrl":null,"url":null,"abstract":"In this paper, the classical Euler-Bernoulli beam equation is considered by utilizing fractional calculus. Such an equation is called the time-fractional EulerBernoulli beam equation. The problem of determining the time-dependent coefficient for the fractional Euler-Bernoulli beam equation with homogeneous boundary conditions and an additional measurement is considered, and the existence and uniqueness theorem of the solution is proved by means of the contraction principle on a sufficiently small time interval. Numerical experiments are also provided to verify the theoretical findings.","PeriodicalId":49861,"journal":{"name":"Mathematical Modelling and Analysis","volume":"134 1","pages":"503-518"},"PeriodicalIF":1.6000,"publicationDate":"2021-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inverse Problem for the Time-fractional Euler-Bernoulli beam equation\",\"authors\":\"I. Tekin, He Yang\",\"doi\":\"10.3846/mma.2021.13289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the classical Euler-Bernoulli beam equation is considered by utilizing fractional calculus. Such an equation is called the time-fractional EulerBernoulli beam equation. The problem of determining the time-dependent coefficient for the fractional Euler-Bernoulli beam equation with homogeneous boundary conditions and an additional measurement is considered, and the existence and uniqueness theorem of the solution is proved by means of the contraction principle on a sufficiently small time interval. Numerical experiments are also provided to verify the theoretical findings.\",\"PeriodicalId\":49861,\"journal\":{\"name\":\"Mathematical Modelling and Analysis\",\"volume\":\"134 1\",\"pages\":\"503-518\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3846/mma.2021.13289\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2021.13289","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文利用分数阶微积分研究了经典欧拉-伯努利梁方程。这样的方程被称为时间分数欧拉伯努利梁方程。研究了具有齐次边界条件和附加测度的分数阶欧拉-伯努利梁方程时相关系数的确定问题,并利用收缩原理在足够小的时间间隔上证明了该方程解的存在唯一性定理。数值实验也验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse Problem for the Time-fractional Euler-Bernoulli beam equation
In this paper, the classical Euler-Bernoulli beam equation is considered by utilizing fractional calculus. Such an equation is called the time-fractional EulerBernoulli beam equation. The problem of determining the time-dependent coefficient for the fractional Euler-Bernoulli beam equation with homogeneous boundary conditions and an additional measurement is considered, and the existence and uniqueness theorem of the solution is proved by means of the contraction principle on a sufficiently small time interval. Numerical experiments are also provided to verify the theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
5.60%
发文量
28
审稿时长
4.5 months
期刊介绍: Mathematical Modelling and Analysis publishes original research on all areas of mathematical modelling and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信