单子的标准等级

Flavien Breuvart, Dylan McDermott, Tarmo Uustalu
{"title":"单子的标准等级","authors":"Flavien Breuvart, Dylan McDermott, Tarmo Uustalu","doi":"10.4204/EPTCS.380.1","DOIUrl":null,"url":null,"abstract":"We define a notion of grading of a monoid T in a monoidal category C, relative to a class of morphisms M (which provide a notion of M-subobject). We show that, under reasonable conditions (including that M forms a factorization system), there is a canonical grading of T. Our application is to graded monads and models of computational effects. We demonstrate our results by characterizing the canonical gradings of a number of monads, for which C is endofunctors with composition. We also show that we can obtain canonical grades for algebraic operations.","PeriodicalId":11810,"journal":{"name":"essentia law Merchant Shipping Act 1995","volume":"52 1","pages":"1-21"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Canonical Gradings of Monads\",\"authors\":\"Flavien Breuvart, Dylan McDermott, Tarmo Uustalu\",\"doi\":\"10.4204/EPTCS.380.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define a notion of grading of a monoid T in a monoidal category C, relative to a class of morphisms M (which provide a notion of M-subobject). We show that, under reasonable conditions (including that M forms a factorization system), there is a canonical grading of T. Our application is to graded monads and models of computational effects. We demonstrate our results by characterizing the canonical gradings of a number of monads, for which C is endofunctors with composition. We also show that we can obtain canonical grades for algebraic operations.\",\"PeriodicalId\":11810,\"journal\":{\"name\":\"essentia law Merchant Shipping Act 1995\",\"volume\":\"52 1\",\"pages\":\"1-21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"essentia law Merchant Shipping Act 1995\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.380.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"essentia law Merchant Shipping Act 1995","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.380.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们定义了在一元范畴C中,相对于一类态射M(它提供了一个M-子对象的概念),一元T的分级概念。我们证明,在合理的条件下(包括M形成因式分解系统),t有一个规范的分级。我们的应用是计算效果的分级单子和模型。我们通过描述一些单子的典型分级来证明我们的结果,其中C是具有组成的内函子。我们也证明了代数运算可以得到正则等级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Canonical Gradings of Monads
We define a notion of grading of a monoid T in a monoidal category C, relative to a class of morphisms M (which provide a notion of M-subobject). We show that, under reasonable conditions (including that M forms a factorization system), there is a canonical grading of T. Our application is to graded monads and models of computational effects. We demonstrate our results by characterizing the canonical gradings of a number of monads, for which C is endofunctors with composition. We also show that we can obtain canonical grades for algebraic operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信