Mohamed El Amine Dahou, Mohammed Hadj Kouider, Siham Dehmani, A. Habchi, Said Slimani
{"title":"碱预处理提高泻湖站污泥沼气产量的试验研究","authors":"Mohamed El Amine Dahou, Mohammed Hadj Kouider, Siham Dehmani, A. Habchi, Said Slimani","doi":"10.1177/0958305X221088569","DOIUrl":null,"url":null,"abstract":"The present research focuses on the experimental study of the effect of alkaline pretreatment with NaOH on biogas production. Different concentrations of NaOH, i.e. 1, 2.5 and 5% (w/w), were tested on the lagoon station's sludge (dry basis) at room temperature for 24 h. The results obtained after 60 days of digestion, through the cumulative volume of biogas recorded, clearly indicate a positive effect of the chemical alkaline pretreatment on the anaerobic digestion since the amount of biogas produced increased by 42.6% when the NaOH concentration was close to 2.5%. This concentration is considered optimal under the chosen conditions. Indeed, inhibition of the methanogenic activity and a blockage of the digestion process are observed beyond this concentration. These results suggest that the alkaline pretreatment can improve the energy efficiency of the obtained biogas (CH4 content) and reduce the residence time.","PeriodicalId":11652,"journal":{"name":"Energy & Environment","volume":"7 1","pages":"1492 - 1508"},"PeriodicalIF":4.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study of Increase of Biogas Production from Lagoon Station's Sludge by Alkaline Pretreatment\",\"authors\":\"Mohamed El Amine Dahou, Mohammed Hadj Kouider, Siham Dehmani, A. Habchi, Said Slimani\",\"doi\":\"10.1177/0958305X221088569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present research focuses on the experimental study of the effect of alkaline pretreatment with NaOH on biogas production. Different concentrations of NaOH, i.e. 1, 2.5 and 5% (w/w), were tested on the lagoon station's sludge (dry basis) at room temperature for 24 h. The results obtained after 60 days of digestion, through the cumulative volume of biogas recorded, clearly indicate a positive effect of the chemical alkaline pretreatment on the anaerobic digestion since the amount of biogas produced increased by 42.6% when the NaOH concentration was close to 2.5%. This concentration is considered optimal under the chosen conditions. Indeed, inhibition of the methanogenic activity and a blockage of the digestion process are observed beyond this concentration. These results suggest that the alkaline pretreatment can improve the energy efficiency of the obtained biogas (CH4 content) and reduce the residence time.\",\"PeriodicalId\":11652,\"journal\":{\"name\":\"Energy & Environment\",\"volume\":\"7 1\",\"pages\":\"1492 - 1508\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1177/0958305X221088569\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1177/0958305X221088569","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
Experimental Study of Increase of Biogas Production from Lagoon Station's Sludge by Alkaline Pretreatment
The present research focuses on the experimental study of the effect of alkaline pretreatment with NaOH on biogas production. Different concentrations of NaOH, i.e. 1, 2.5 and 5% (w/w), were tested on the lagoon station's sludge (dry basis) at room temperature for 24 h. The results obtained after 60 days of digestion, through the cumulative volume of biogas recorded, clearly indicate a positive effect of the chemical alkaline pretreatment on the anaerobic digestion since the amount of biogas produced increased by 42.6% when the NaOH concentration was close to 2.5%. This concentration is considered optimal under the chosen conditions. Indeed, inhibition of the methanogenic activity and a blockage of the digestion process are observed beyond this concentration. These results suggest that the alkaline pretreatment can improve the energy efficiency of the obtained biogas (CH4 content) and reduce the residence time.
期刊介绍:
Energy & Environment is an interdisciplinary journal inviting energy policy analysts, natural scientists and engineers, as well as lawyers and economists to contribute to mutual understanding and learning, believing that better communication between experts will enhance the quality of policy, advance social well-being and help to reduce conflict. The journal encourages dialogue between the social sciences as energy demand and supply are observed and analysed with reference to politics of policy-making and implementation. The rapidly evolving social and environmental impacts of energy supply, transport, production and use at all levels require contribution from many disciplines if policy is to be effective. In particular E & E invite contributions from the study of policy delivery, ultimately more important than policy formation. The geopolitics of energy are also important, as are the impacts of environmental regulations and advancing technologies on national and local politics, and even global energy politics. Energy & Environment is a forum for constructive, professional information sharing, as well as debate across disciplines and professions, including the financial sector. Mathematical articles are outside the scope of Energy & Environment. The broader policy implications of submitted research should be addressed and environmental implications, not just emission quantities, be discussed with reference to scientific assumptions. This applies especially to technical papers based on arguments suggested by other disciplines, funding bodies or directly by policy-makers.