{"title":"基于改进jaya优化方法的模糊结构分析","authors":"H. Pham, B. Nguyen","doi":"10.3311/ppci.22818","DOIUrl":null,"url":null,"abstract":"A new approach to performing the α-level optimization in the fuzzy analysis of structural systems is developed in this study. The method uses a simple global optimizer, the Jaya algorithm, together with an innovative dimension reduction technique. The dimension reduction technique aims to transform the original large α-level optimization problem into a low-dimension one by making use of the monotonic behavior of the system output with respect to the input variables. Then, the Jaya algorithm is applied to solve the reduced max/min α-level optimization problems to determine the bounds of the fuzzy output. Two numerical examples, including a 2D truss and a 3D truss, with a relatively large number of fuzzy input variables are analyzed and the fuzzy displacements under static loads are predicted. It is demonstrated that the proposed approach can save a significant computational amount and also estimate the fuzzy displacement with high accuracy.","PeriodicalId":49705,"journal":{"name":"Periodica Polytechnica-Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy Structural Analysis Using Improved Jaya-based Optimization Approach\",\"authors\":\"H. Pham, B. Nguyen\",\"doi\":\"10.3311/ppci.22818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new approach to performing the α-level optimization in the fuzzy analysis of structural systems is developed in this study. The method uses a simple global optimizer, the Jaya algorithm, together with an innovative dimension reduction technique. The dimension reduction technique aims to transform the original large α-level optimization problem into a low-dimension one by making use of the monotonic behavior of the system output with respect to the input variables. Then, the Jaya algorithm is applied to solve the reduced max/min α-level optimization problems to determine the bounds of the fuzzy output. Two numerical examples, including a 2D truss and a 3D truss, with a relatively large number of fuzzy input variables are analyzed and the fuzzy displacements under static loads are predicted. It is demonstrated that the proposed approach can save a significant computational amount and also estimate the fuzzy displacement with high accuracy.\",\"PeriodicalId\":49705,\"journal\":{\"name\":\"Periodica Polytechnica-Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Polytechnica-Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3311/ppci.22818\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica-Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppci.22818","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Fuzzy Structural Analysis Using Improved Jaya-based Optimization Approach
A new approach to performing the α-level optimization in the fuzzy analysis of structural systems is developed in this study. The method uses a simple global optimizer, the Jaya algorithm, together with an innovative dimension reduction technique. The dimension reduction technique aims to transform the original large α-level optimization problem into a low-dimension one by making use of the monotonic behavior of the system output with respect to the input variables. Then, the Jaya algorithm is applied to solve the reduced max/min α-level optimization problems to determine the bounds of the fuzzy output. Two numerical examples, including a 2D truss and a 3D truss, with a relatively large number of fuzzy input variables are analyzed and the fuzzy displacements under static loads are predicted. It is demonstrated that the proposed approach can save a significant computational amount and also estimate the fuzzy displacement with high accuracy.
期刊介绍:
Periodica Polytechnica Civil Engineering is a peer reviewed scientific journal published by the Faculty of Civil Engineering of the Budapest University of Technology and Economics. It was founded in 1957. Publication frequency: quarterly.
Periodica Polytechnica Civil Engineering publishes both research and application oriented papers, in the area of civil engineering.
The main scope of the journal is to publish original research articles in the wide field of civil engineering, including geodesy and surveying, construction materials and engineering geology, photogrammetry and geoinformatics, geotechnics, structural engineering, architectural engineering, structural mechanics, highway and railway engineering, hydraulic and water resources engineering, sanitary and environmental engineering, engineering optimisation and history of civil engineering. The journal is abstracted by several international databases, see the main page.