机器人学参考

T. Williams, matthias. scheutz
{"title":"机器人学参考","authors":"T. Williams, matthias. scheutz","doi":"10.1093/oxfordhb/9780199687305.013.21","DOIUrl":null,"url":null,"abstract":"As robots become increasingly prevalent in our society, it becomes increasingly important to endow them with natural language capabilities, including the ability to both understand and generate so-called referring expressions. In recent work, we have sought to enable referring expression understanding capabilities by leveraging the Givenness Hierarchy (GH), which provides an elegant linguistic framework for reasoning about notions of reference in human discourse. This chapter first provides an overview of the GH and discusses previous GH-theoretic approaches to reference resolution. It then describes our own GH-theoretic approach, the GH-POWER algorithm, and suggests future refinements of our algorithm with respect to the theoretical commitments of the GH. Next, the chapter briefly surveys other prominent approaches to reference resolution in robotics, and discusses how these compare to our approach. Finally, it concludes with a discussion of possible directions for future work.","PeriodicalId":22888,"journal":{"name":"The Oxford Handbook of Reference","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reference in Robotics\",\"authors\":\"T. Williams, matthias. scheutz\",\"doi\":\"10.1093/oxfordhb/9780199687305.013.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As robots become increasingly prevalent in our society, it becomes increasingly important to endow them with natural language capabilities, including the ability to both understand and generate so-called referring expressions. In recent work, we have sought to enable referring expression understanding capabilities by leveraging the Givenness Hierarchy (GH), which provides an elegant linguistic framework for reasoning about notions of reference in human discourse. This chapter first provides an overview of the GH and discusses previous GH-theoretic approaches to reference resolution. It then describes our own GH-theoretic approach, the GH-POWER algorithm, and suggests future refinements of our algorithm with respect to the theoretical commitments of the GH. Next, the chapter briefly surveys other prominent approaches to reference resolution in robotics, and discusses how these compare to our approach. Finally, it concludes with a discussion of possible directions for future work.\",\"PeriodicalId\":22888,\"journal\":{\"name\":\"The Oxford Handbook of Reference\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Oxford Handbook of Reference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oxfordhb/9780199687305.013.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Oxford Handbook of Reference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oxfordhb/9780199687305.013.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着机器人在我们的社会中变得越来越普遍,赋予它们自然语言能力变得越来越重要,包括理解和生成所谓的指称表达的能力。在最近的工作中,我们试图通过利用给定层次结构(GH)来实现参考表达理解能力,这为人类话语中的参考概念推理提供了一个优雅的语言框架。本章首先概述了GH,并讨论了以前的GH理论方法来实现参考分辨率。然后描述了我们自己的GH理论方法,GH- power算法,并根据GH的理论承诺对我们的算法提出了未来的改进建议。接下来,本章简要介绍了机器人中参考分辨率的其他突出方法,并讨论了这些方法与我们的方法的比较。最后,对未来工作的可能方向进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reference in Robotics
As robots become increasingly prevalent in our society, it becomes increasingly important to endow them with natural language capabilities, including the ability to both understand and generate so-called referring expressions. In recent work, we have sought to enable referring expression understanding capabilities by leveraging the Givenness Hierarchy (GH), which provides an elegant linguistic framework for reasoning about notions of reference in human discourse. This chapter first provides an overview of the GH and discusses previous GH-theoretic approaches to reference resolution. It then describes our own GH-theoretic approach, the GH-POWER algorithm, and suggests future refinements of our algorithm with respect to the theoretical commitments of the GH. Next, the chapter briefly surveys other prominent approaches to reference resolution in robotics, and discusses how these compare to our approach. Finally, it concludes with a discussion of possible directions for future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信