非紧化Ricci流的perelman型无呼吸定理

Liang Cheng, Yongjia Zhang
{"title":"非紧化Ricci流的perelman型无呼吸定理","authors":"Liang Cheng, Yongjia Zhang","doi":"10.1090/TRAN/8436","DOIUrl":null,"url":null,"abstract":"In this paper, we first show that a complete shrinking breather with Ricci curvature bounded from below must be a shrinking gradient Ricci soliton. This result has several applications. First, we can classify all complete $3$-dimensional shrinking breathers. Second, we can show that every complete shrinking Ricci soliton with Ricci curvature bounded from below must be gradient -- a generalization of Naber's result. Furthermore, we develop a general condition for the existence of the asymptotic shrinking gradient Ricci soliton, which hopefully will contribute to the study of ancient solutions.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Perelman-type no breather theorem for noncompact Ricci flows\",\"authors\":\"Liang Cheng, Yongjia Zhang\",\"doi\":\"10.1090/TRAN/8436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we first show that a complete shrinking breather with Ricci curvature bounded from below must be a shrinking gradient Ricci soliton. This result has several applications. First, we can classify all complete $3$-dimensional shrinking breathers. Second, we can show that every complete shrinking Ricci soliton with Ricci curvature bounded from below must be gradient -- a generalization of Naber's result. Furthermore, we develop a general condition for the existence of the asymptotic shrinking gradient Ricci soliton, which hopefully will contribute to the study of ancient solutions.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/TRAN/8436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/TRAN/8436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文首先证明了一个Ricci曲率从下有界的完全收缩呼吸子必须是一个收缩梯度Ricci孤子。这个结果有几个应用。首先,我们可以对所有完整的$3$维收缩呼吸体进行分类。其次,我们可以证明每一个Ricci曲率从下面有界的完全收缩Ricci孤子都必须是梯度的——这是对Naber结果的推广。此外,我们还给出了渐近收缩梯度Ricci孤子存在的一般条件,以期对古解的研究有所帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perelman-type no breather theorem for noncompact Ricci flows
In this paper, we first show that a complete shrinking breather with Ricci curvature bounded from below must be a shrinking gradient Ricci soliton. This result has several applications. First, we can classify all complete $3$-dimensional shrinking breathers. Second, we can show that every complete shrinking Ricci soliton with Ricci curvature bounded from below must be gradient -- a generalization of Naber's result. Furthermore, we develop a general condition for the existence of the asymptotic shrinking gradient Ricci soliton, which hopefully will contribute to the study of ancient solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信