正交对称非对称转子分子的四阶哈密顿量

W. Olson, H. Allen
{"title":"正交对称非对称转子分子的四阶哈密顿量","authors":"W. Olson, H. Allen","doi":"10.6028/jres.067A.039","DOIUrl":null,"url":null,"abstract":"The fourth order Hamiltonian of an asymmetric rotor molecule of orthorhombic symmetry given recently has been considerably reduced in complexity through the use of equations derived from the basic relationship among the angular momentum operators. The reduced Hamiltonian obtained provides a most convenient starting point for the calculation of rotational energy levels from a solution of the complete secular equation, for a perturbation theory solution to the problem of centrifugal distortion, and for the deduction of sum rules among the energy levels.","PeriodicalId":94340,"journal":{"name":"Journal of research of the National Bureau of Standards. Section A, Physics and chemistry","volume":"16 1","pages":"359 - 362"},"PeriodicalIF":0.0000,"publicationDate":"1963-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"On the Fourth Order Hamiltonian of an Asymmetric Rotor Molecule of Orthorhombic Symmetry\",\"authors\":\"W. Olson, H. Allen\",\"doi\":\"10.6028/jres.067A.039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fourth order Hamiltonian of an asymmetric rotor molecule of orthorhombic symmetry given recently has been considerably reduced in complexity through the use of equations derived from the basic relationship among the angular momentum operators. The reduced Hamiltonian obtained provides a most convenient starting point for the calculation of rotational energy levels from a solution of the complete secular equation, for a perturbation theory solution to the problem of centrifugal distortion, and for the deduction of sum rules among the energy levels.\",\"PeriodicalId\":94340,\"journal\":{\"name\":\"Journal of research of the National Bureau of Standards. Section A, Physics and chemistry\",\"volume\":\"16 1\",\"pages\":\"359 - 362\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1963-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of research of the National Bureau of Standards. Section A, Physics and chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6028/jres.067A.039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of research of the National Bureau of Standards. Section A, Physics and chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/jres.067A.039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

利用角动量算符之间的基本关系推导出的方程,大大降低了正交对称非对称转子分子的四阶哈密顿量的复杂性。所得到的简化哈密顿量为从完全长期方程的解中计算旋转能级、离心畸变问题的摄动理论解以及各能级之间的和规则的推导提供了一个最方便的起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Fourth Order Hamiltonian of an Asymmetric Rotor Molecule of Orthorhombic Symmetry
The fourth order Hamiltonian of an asymmetric rotor molecule of orthorhombic symmetry given recently has been considerably reduced in complexity through the use of equations derived from the basic relationship among the angular momentum operators. The reduced Hamiltonian obtained provides a most convenient starting point for the calculation of rotational energy levels from a solution of the complete secular equation, for a perturbation theory solution to the problem of centrifugal distortion, and for the deduction of sum rules among the energy levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信