基于gan的逼真胃肠道息肉图像合成

Ataher Sams, Homaira Huda Shomee
{"title":"基于gan的逼真胃肠道息肉图像合成","authors":"Ataher Sams, Homaira Huda Shomee","doi":"10.1109/ISBI52829.2022.9761447","DOIUrl":null,"url":null,"abstract":"Polyps in the gastrointestinal (GI) tract in the human body are one of the most significant symptoms of gastric and colorectal cancer and some other diseases. This paper proposes Generative Adversarial Networks (GANs) based methods that first use a StyleGAN2-ada to generate random polyp masks, which are used to create composite images with healthy GI images. Then a conditional GAN is used to translate these composite images into synthetic polyp images. The proposed approach can produce a high amount of realistic GI polyp images and can increase F1-score and IoU in polyp detection by around 4% when used in the training phase of the YOLOv4 object detector.","PeriodicalId":6827,"journal":{"name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","volume":"15 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"GAN-Based Realistic Gastrointestinal Polyp Image Synthesis\",\"authors\":\"Ataher Sams, Homaira Huda Shomee\",\"doi\":\"10.1109/ISBI52829.2022.9761447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polyps in the gastrointestinal (GI) tract in the human body are one of the most significant symptoms of gastric and colorectal cancer and some other diseases. This paper proposes Generative Adversarial Networks (GANs) based methods that first use a StyleGAN2-ada to generate random polyp masks, which are used to create composite images with healthy GI images. Then a conditional GAN is used to translate these composite images into synthetic polyp images. The proposed approach can produce a high amount of realistic GI polyp images and can increase F1-score and IoU in polyp detection by around 4% when used in the training phase of the YOLOv4 object detector.\",\"PeriodicalId\":6827,\"journal\":{\"name\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"15 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI52829.2022.9761447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI52829.2022.9761447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

人体胃肠道息肉是胃癌、大肠癌等疾病的重要症状之一。本文提出了基于生成式对抗网络(Generative Adversarial Networks, GANs)的方法,该方法首先使用StyleGAN2-ada生成随机息肉掩模,用于与健康GI图像创建复合图像。然后使用条件GAN将这些合成图像转换为合成息肉图像。在YOLOv4目标检测器的训练阶段,该方法可以产生大量逼真的胃肠道息肉图像,并且可以将息肉检测的f1分数和IoU提高约4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GAN-Based Realistic Gastrointestinal Polyp Image Synthesis
Polyps in the gastrointestinal (GI) tract in the human body are one of the most significant symptoms of gastric and colorectal cancer and some other diseases. This paper proposes Generative Adversarial Networks (GANs) based methods that first use a StyleGAN2-ada to generate random polyp masks, which are used to create composite images with healthy GI images. Then a conditional GAN is used to translate these composite images into synthetic polyp images. The proposed approach can produce a high amount of realistic GI polyp images and can increase F1-score and IoU in polyp detection by around 4% when used in the training phase of the YOLOv4 object detector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信