即时策略游戏中的非对称行动抽象

IF 4.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Rubens O. Moraes, M. Nascimento, Levi H. S. Lelis
{"title":"即时策略游戏中的非对称行动抽象","authors":"Rubens O. Moraes, M. Nascimento, Levi H. S. Lelis","doi":"10.1613/jair.1.13769","DOIUrl":null,"url":null,"abstract":"Action abstractions restrict the number of legal actions available for real-time planning in zero-sum extensive-form games, thus allowing algorithms to focus their search on a set of promising actions. Even though unabstracted game trees can lead to optimal policies, due to real-time constraints and the tree size, they are not a practical choice. In this context, we introduce an action abstraction scheme which we call asymmetric action abstraction. Asymmetric abstractions allow search algorithms to “pay more attention” to some aspects of the game by unevenly dividing the algorithm’s search effort amongst different aspects of the game. We also introduce four algorithms that search in asymmetrically abstracted game trees to evaluate the effectiveness of our abstraction schemes. Two of our algorithms are adaptations of algorithms developed for searching in action-abstracted spaces, Portfolio Greedy Search and Stratified Strategy Selection, and the other two are adaptations of an algorithm developed for searching in unabstracted spaces, NaïveMCTS. An extensive set of experiments in a real-time strategy game shows that search algorithms using asymmetric abstractions are able to outperform all other search algorithms tested.","PeriodicalId":54877,"journal":{"name":"Journal of Artificial Intelligence Research","volume":"18 1","pages":"1103-1137"},"PeriodicalIF":4.5000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymmetric Action Abstractions for Planning in Real-Time Strategy Games\",\"authors\":\"Rubens O. Moraes, M. Nascimento, Levi H. S. Lelis\",\"doi\":\"10.1613/jair.1.13769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Action abstractions restrict the number of legal actions available for real-time planning in zero-sum extensive-form games, thus allowing algorithms to focus their search on a set of promising actions. Even though unabstracted game trees can lead to optimal policies, due to real-time constraints and the tree size, they are not a practical choice. In this context, we introduce an action abstraction scheme which we call asymmetric action abstraction. Asymmetric abstractions allow search algorithms to “pay more attention” to some aspects of the game by unevenly dividing the algorithm’s search effort amongst different aspects of the game. We also introduce four algorithms that search in asymmetrically abstracted game trees to evaluate the effectiveness of our abstraction schemes. Two of our algorithms are adaptations of algorithms developed for searching in action-abstracted spaces, Portfolio Greedy Search and Stratified Strategy Selection, and the other two are adaptations of an algorithm developed for searching in unabstracted spaces, NaïveMCTS. An extensive set of experiments in a real-time strategy game shows that search algorithms using asymmetric abstractions are able to outperform all other search algorithms tested.\",\"PeriodicalId\":54877,\"journal\":{\"name\":\"Journal of Artificial Intelligence Research\",\"volume\":\"18 1\",\"pages\":\"1103-1137\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2022-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1613/jair.1.13769\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1613/jair.1.13769","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在零和游戏中,动作抽象限制了可用于实时规划的合法行动的数量,从而允许算法将搜索重点放在一组有希望的行动上。尽管非抽象的游戏树可以带来最佳策略,但由于实时约束和树的大小,它们并不是一个实际的选择。在这种情况下,我们引入了一种称为非对称动作抽象的动作抽象方案。非对称抽象允许搜索算法通过在游戏的不同方面不均匀地分配算法的搜索努力而“更加关注”游戏的某些方面。我们还介绍了在非对称抽象博弈树中搜索的四种算法,以评估我们的抽象方案的有效性。我们的两个算法是针对在动作抽象空间中搜索而开发的算法(投资组合贪婪搜索和分层策略选择)的改编,另外两个算法是针对在非抽象空间中搜索而开发的算法(NaïveMCTS)的改编。在实时策略游戏中进行的大量实验表明,使用非对称抽象的搜索算法能够优于所有其他经过测试的搜索算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymmetric Action Abstractions for Planning in Real-Time Strategy Games
Action abstractions restrict the number of legal actions available for real-time planning in zero-sum extensive-form games, thus allowing algorithms to focus their search on a set of promising actions. Even though unabstracted game trees can lead to optimal policies, due to real-time constraints and the tree size, they are not a practical choice. In this context, we introduce an action abstraction scheme which we call asymmetric action abstraction. Asymmetric abstractions allow search algorithms to “pay more attention” to some aspects of the game by unevenly dividing the algorithm’s search effort amongst different aspects of the game. We also introduce four algorithms that search in asymmetrically abstracted game trees to evaluate the effectiveness of our abstraction schemes. Two of our algorithms are adaptations of algorithms developed for searching in action-abstracted spaces, Portfolio Greedy Search and Stratified Strategy Selection, and the other two are adaptations of an algorithm developed for searching in unabstracted spaces, NaïveMCTS. An extensive set of experiments in a real-time strategy game shows that search algorithms using asymmetric abstractions are able to outperform all other search algorithms tested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Artificial Intelligence Research
Journal of Artificial Intelligence Research 工程技术-计算机:人工智能
CiteScore
9.60
自引率
4.00%
发文量
98
审稿时长
4 months
期刊介绍: JAIR(ISSN 1076 - 9757) covers all areas of artificial intelligence (AI), publishing refereed research articles, survey articles, and technical notes. Established in 1993 as one of the first electronic scientific journals, JAIR is indexed by INSPEC, Science Citation Index, and MathSciNet. JAIR reviews papers within approximately three months of submission and publishes accepted articles on the internet immediately upon receiving the final versions. JAIR articles are published for free distribution on the internet by the AI Access Foundation, and for purchase in bound volumes by AAAI Press.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信