Jiyin He, M. de Rijke, M. Sevenster, R. V. Ommering, Y. Qian
{"title":"生成背景知识链接:使用叙述性放射学报告的案例研究","authors":"Jiyin He, M. de Rijke, M. Sevenster, R. V. Ommering, Y. Qian","doi":"10.1145/2063576.2063845","DOIUrl":null,"url":null,"abstract":"Automatically annotating texts with background information has recently received much attention. We conduct a case study in automatically generating links from narrative radiology reports to Wikipedia. Such links help users understand the medical terminology and thereby increase the value of the reports. Direct applications of existing automatic link generation systems trained on Wikipedia to our radiology data do not yield satisfactory results. Our analysis reveals that medical phrases are often syntactically regular but semantically complicated, e.g., containing multiple concepts or concepts with multiple modifiers. The latter property is the main reason for the failure of existing systems. Based on this observation, we propose an automatic link generation approach that takes into account these properties. We use a sequential labeling approach with syntactic features for anchor text identification in order to exploit syntactic regularities in medical terminology. We combine this with a sub-anchor based approach to target finding, which is aimed at coping with the complex semantic structure of medical phrases. Empirical results show that the proposed system effectively improves the performance over existing systems.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"96 1","pages":"1867-1876"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Generating links to background knowledge: a case study using narrative radiology reports\",\"authors\":\"Jiyin He, M. de Rijke, M. Sevenster, R. V. Ommering, Y. Qian\",\"doi\":\"10.1145/2063576.2063845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatically annotating texts with background information has recently received much attention. We conduct a case study in automatically generating links from narrative radiology reports to Wikipedia. Such links help users understand the medical terminology and thereby increase the value of the reports. Direct applications of existing automatic link generation systems trained on Wikipedia to our radiology data do not yield satisfactory results. Our analysis reveals that medical phrases are often syntactically regular but semantically complicated, e.g., containing multiple concepts or concepts with multiple modifiers. The latter property is the main reason for the failure of existing systems. Based on this observation, we propose an automatic link generation approach that takes into account these properties. We use a sequential labeling approach with syntactic features for anchor text identification in order to exploit syntactic regularities in medical terminology. We combine this with a sub-anchor based approach to target finding, which is aimed at coping with the complex semantic structure of medical phrases. Empirical results show that the proposed system effectively improves the performance over existing systems.\",\"PeriodicalId\":74507,\"journal\":{\"name\":\"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management\",\"volume\":\"96 1\",\"pages\":\"1867-1876\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2063576.2063845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063576.2063845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Generating links to background knowledge: a case study using narrative radiology reports
Automatically annotating texts with background information has recently received much attention. We conduct a case study in automatically generating links from narrative radiology reports to Wikipedia. Such links help users understand the medical terminology and thereby increase the value of the reports. Direct applications of existing automatic link generation systems trained on Wikipedia to our radiology data do not yield satisfactory results. Our analysis reveals that medical phrases are often syntactically regular but semantically complicated, e.g., containing multiple concepts or concepts with multiple modifiers. The latter property is the main reason for the failure of existing systems. Based on this observation, we propose an automatic link generation approach that takes into account these properties. We use a sequential labeling approach with syntactic features for anchor text identification in order to exploit syntactic regularities in medical terminology. We combine this with a sub-anchor based approach to target finding, which is aimed at coping with the complex semantic structure of medical phrases. Empirical results show that the proposed system effectively improves the performance over existing systems.