基于自回归建模的心电心律失常数据库系统

Q4 Engineering
Q. Hamarsheh
{"title":"基于自回归建模的心电心律失常数据库系统","authors":"Q. Hamarsheh","doi":"10.46300/9106.2022.16.130","DOIUrl":null,"url":null,"abstract":"This article proposes an ECG (electrocardiography) database system based on linear filtering, wavelet transform, PSD analysis, and adaptive AR modeling technologies to distinguish 19 ECG beat types for classification. This paper uses the Savitzky-Golay filter and wavelet transform for noise reduction, and wavelet analysis and AR modeling techniques for feature extraction to design a database system of AR coefficients describing the ECG signals with different arrhythmia types. In the experimental part of this work, the proposed algorithm performance is evaluated using an ECG dataset containing 19 different types including normal sinus rhythm, atrial premature contraction, ventricular premature contraction, ventricular tachycardia, ventricular fibrillation, supraventricular tachycardia, and other types from the MIT-BIH Arrhythmia Database. The simulation is performed in a MATLAB environment.","PeriodicalId":13929,"journal":{"name":"International Journal of Circuits, Systems and Signal Processing","volume":"98 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autoregressive Modeling based ECG Cardiac Arrhythmias’ Database System\",\"authors\":\"Q. Hamarsheh\",\"doi\":\"10.46300/9106.2022.16.130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes an ECG (electrocardiography) database system based on linear filtering, wavelet transform, PSD analysis, and adaptive AR modeling technologies to distinguish 19 ECG beat types for classification. This paper uses the Savitzky-Golay filter and wavelet transform for noise reduction, and wavelet analysis and AR modeling techniques for feature extraction to design a database system of AR coefficients describing the ECG signals with different arrhythmia types. In the experimental part of this work, the proposed algorithm performance is evaluated using an ECG dataset containing 19 different types including normal sinus rhythm, atrial premature contraction, ventricular premature contraction, ventricular tachycardia, ventricular fibrillation, supraventricular tachycardia, and other types from the MIT-BIH Arrhythmia Database. The simulation is performed in a MATLAB environment.\",\"PeriodicalId\":13929,\"journal\":{\"name\":\"International Journal of Circuits, Systems and Signal Processing\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Circuits, Systems and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46300/9106.2022.16.130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuits, Systems and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/9106.2022.16.130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于线性滤波、小波变换、PSD分析和自适应AR建模技术的心电数据库系统,以区分19种心电拍类型进行分类。本文采用Savitzky-Golay滤波和小波变换进行降噪,采用小波分析和AR建模技术进行特征提取,设计了一个描述不同心律失常类型心电信号的AR系数数据库系统。在本工作的实验部分,使用包含19种不同类型的ECG数据集评估了所提出的算法的性能,包括正常窦性心律、房性早搏、室性早搏、室性心动过速、心室颤动、室上性心动过速以及来自MIT-BIH心律失常数据库的其他类型。仿真在MATLAB环境下进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autoregressive Modeling based ECG Cardiac Arrhythmias’ Database System
This article proposes an ECG (electrocardiography) database system based on linear filtering, wavelet transform, PSD analysis, and adaptive AR modeling technologies to distinguish 19 ECG beat types for classification. This paper uses the Savitzky-Golay filter and wavelet transform for noise reduction, and wavelet analysis and AR modeling techniques for feature extraction to design a database system of AR coefficients describing the ECG signals with different arrhythmia types. In the experimental part of this work, the proposed algorithm performance is evaluated using an ECG dataset containing 19 different types including normal sinus rhythm, atrial premature contraction, ventricular premature contraction, ventricular tachycardia, ventricular fibrillation, supraventricular tachycardia, and other types from the MIT-BIH Arrhythmia Database. The simulation is performed in a MATLAB environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Circuits, Systems and Signal Processing
International Journal of Circuits, Systems and Signal Processing Engineering-Electrical and Electronic Engineering
自引率
0.00%
发文量
155
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信