表面声波在有耗超表面上的传播:复杂色散关系的实验和理论表征

L. Schwan, A. Geslain, J. Groby, V. Romero-García
{"title":"表面声波在有耗超表面上的传播:复杂色散关系的实验和理论表征","authors":"L. Schwan, A. Geslain, J. Groby, V. Romero-García","doi":"10.1109/METAMATERIALS.2016.7746384","DOIUrl":null,"url":null,"abstract":"While metasurfaces properties are known to govern the dispersion relation of Surface Acoustic Wave (SAW) that mimics surface plasmon phenomena, little attention has been paid to the effects of micro-structural dissipation on that dispersion relation. Here we report the experimental and theoretical characterization of both SAW propagation and attenuation in the presence of a lossy metasurface. The latter consists of quarter-wavelength resonators embedded in a rigid board and arranged periodically in a square lattice. Complex SAW wavenumbers are retrieved experimentally using a spatial Laplace Transform, and experimental results are compared with those from an analytical model using Plane Wave Expansions. Both real and imaginary parts of the SAW wavenumber are presented and results bears testament to the hybridisation of the metasurface-induced dispersion relation with periodicity-induced Bragg interferences. The accuracy of homogenization approaches is estimated and the possibility of slow sound applications using such a metasurface is discussed in regard to SAW attenuation.","PeriodicalId":6587,"journal":{"name":"2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface acousticwaves propagation at lossy metasurfaces: Experimental and theoretical characterization of complex dispersion relations\",\"authors\":\"L. Schwan, A. Geslain, J. Groby, V. Romero-García\",\"doi\":\"10.1109/METAMATERIALS.2016.7746384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While metasurfaces properties are known to govern the dispersion relation of Surface Acoustic Wave (SAW) that mimics surface plasmon phenomena, little attention has been paid to the effects of micro-structural dissipation on that dispersion relation. Here we report the experimental and theoretical characterization of both SAW propagation and attenuation in the presence of a lossy metasurface. The latter consists of quarter-wavelength resonators embedded in a rigid board and arranged periodically in a square lattice. Complex SAW wavenumbers are retrieved experimentally using a spatial Laplace Transform, and experimental results are compared with those from an analytical model using Plane Wave Expansions. Both real and imaginary parts of the SAW wavenumber are presented and results bears testament to the hybridisation of the metasurface-induced dispersion relation with periodicity-induced Bragg interferences. The accuracy of homogenization approaches is estimated and the possibility of slow sound applications using such a metasurface is discussed in regard to SAW attenuation.\",\"PeriodicalId\":6587,\"journal\":{\"name\":\"2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/METAMATERIALS.2016.7746384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/METAMATERIALS.2016.7746384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然超表面特性控制着表面声波(SAW)的色散关系,但微观结构耗散对这种色散关系的影响却很少受到关注。在这里,我们报告了在有耗超表面存在下声呐传播和衰减的实验和理论表征。后者由嵌入在刚性板上的四分之一波长谐振器组成,并周期性地排列在方形晶格中。利用空间拉普拉斯变换对复声表面波数进行了实验反演,并将实验结果与平面波展开的解析模型结果进行了比较。给出了声表面波数的实部和虚部,结果证明了超表面诱导色散关系与周期性诱导布拉格干涉的杂化。估计了均匀化方法的准确性,并讨论了使用这种超表面的慢声应用的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surface acousticwaves propagation at lossy metasurfaces: Experimental and theoretical characterization of complex dispersion relations
While metasurfaces properties are known to govern the dispersion relation of Surface Acoustic Wave (SAW) that mimics surface plasmon phenomena, little attention has been paid to the effects of micro-structural dissipation on that dispersion relation. Here we report the experimental and theoretical characterization of both SAW propagation and attenuation in the presence of a lossy metasurface. The latter consists of quarter-wavelength resonators embedded in a rigid board and arranged periodically in a square lattice. Complex SAW wavenumbers are retrieved experimentally using a spatial Laplace Transform, and experimental results are compared with those from an analytical model using Plane Wave Expansions. Both real and imaginary parts of the SAW wavenumber are presented and results bears testament to the hybridisation of the metasurface-induced dispersion relation with periodicity-induced Bragg interferences. The accuracy of homogenization approaches is estimated and the possibility of slow sound applications using such a metasurface is discussed in regard to SAW attenuation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信