广义连锁手术及其应用

Pub Date : 2020-06-05 DOI:10.4310/jsg.2021.v19.n5.a1
Anar Akhmedov, cCaugri Karakurt, Sumeyra Sakalli
{"title":"广义连锁手术及其应用","authors":"Anar Akhmedov, cCaugri Karakurt, Sumeyra Sakalli","doi":"10.4310/jsg.2021.v19.n5.a1","DOIUrl":null,"url":null,"abstract":"We describe the Stein handlebody diagrams of Milnor fibers of Brieskorn singularities $x^p + y^q + z^r = 0$. We also study the natural symplectic operation by exchanging two Stein fillings of the canonical contact structure on the links in the case $p = q = r$, where one of the fillings comes from the minimal resolution and the other is the Milnor fiber. We give two different interpretations of this operation, one as a symplectic sum and the other as a monodromy substitution in a Lefschetz fibration.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized chain surgeries and applications\",\"authors\":\"Anar Akhmedov, cCaugri Karakurt, Sumeyra Sakalli\",\"doi\":\"10.4310/jsg.2021.v19.n5.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the Stein handlebody diagrams of Milnor fibers of Brieskorn singularities $x^p + y^q + z^r = 0$. We also study the natural symplectic operation by exchanging two Stein fillings of the canonical contact structure on the links in the case $p = q = r$, where one of the fillings comes from the minimal resolution and the other is the Milnor fiber. We give two different interpretations of this operation, one as a symplectic sum and the other as a monodromy substitution in a Lefschetz fibration.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2021.v19.n5.a1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2021.v19.n5.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了Brieskorn奇点(x^p + y^q + z^r = 0)的Milnor纤维的Stein柄体图。在p = q = r$的情况下,我们通过交换两个正则接触结构的Stein填充来研究自然辛运算,其中一个填充来自最小分辨率,另一个是Milnor纤维。我们对这个操作给出了两种不同的解释,一种是辛和,另一种是Lefschetz振动中的单变量替换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Generalized chain surgeries and applications
We describe the Stein handlebody diagrams of Milnor fibers of Brieskorn singularities $x^p + y^q + z^r = 0$. We also study the natural symplectic operation by exchanging two Stein fillings of the canonical contact structure on the links in the case $p = q = r$, where one of the fillings comes from the minimal resolution and the other is the Milnor fiber. We give two different interpretations of this operation, one as a symplectic sum and the other as a monodromy substitution in a Lefschetz fibration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信