{"title":"基于地球化学模拟的混合表面活性剂和低盐度/工程注水研究","authors":"A. Adila, E. Al-Shalabi, W. Alameri","doi":"10.4043/31128-ms","DOIUrl":null,"url":null,"abstract":"\n Low salinity/engineered water injections (LSWI/EWI) have gained popularity as effective techniques for enhancing oil recovery. Surfactant flooding is also a well-established and commercially-available technique in the oil and gas industry. In this paper, a numerical 2D simulation model was developed to investigate the effect of hybrid surfactant-LSWI/EWI on oil recovery from carbonate cores under harsh conditions. The developed simulation model was validated by history-matching recently conducted surfactant corefloods in the secondary mode of injection. Oil recovery, pressure drop, and surfactant concentration data were utilized. The surfactant flooding model was then coupled with a geochemical model that captures different reactions during LSWI/EWI. The geochemical reactions considered include aqueous, dissolution/precipitation, and ion-exchange reactions. Different simulation scenarios were considered and compared including waterflooding, surfactant flooding, engineered water injection, hybrid surfactant-EWI, and hybrid surfactant-LSWI. Additionally, sensitivity analysis was performed on the hybrid surfactant-EWI process through capturing changes in surfactant injected concentration and adsorption.\n For the case of LSWI/EWI, wettability alteration was considered as the main mechanism underlying incremental oil recovery. However, both wettability alteration and interfacial tension reduction mechanisms were considered for surfactant flooding depending on the type of surfactant used. The results showed that the hybrid surfactant-EWI altered the wettability and achieved higher oil recovery than that of surfactant-LSWI and other techniques. This highlights the importance of selecting the right combinations of potential ions for a certain reservoir to maximize oil recovery rather than a simple water dilution. The results also highlight the importance of surfactant adsorption and surfactant concentration for the hybrid surfactant-EWI technique. This work provides insights into the application of hybrid surfactant-LSWI/EWI on oil recovery especially in carbonates. The novelty of this work is further expanded through comparing surfactant-LSWI with surfactant-EWI and understanding the controlling parameters of surfactant-EWI through sensitivity analysis.","PeriodicalId":11072,"journal":{"name":"Day 1 Mon, August 16, 2021","volume":"2677 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Insight into Hybrid Surfactant and Low Salinity/Engineered Water Injections in Carbonates Through Geochemical Modeling\",\"authors\":\"A. Adila, E. Al-Shalabi, W. Alameri\",\"doi\":\"10.4043/31128-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Low salinity/engineered water injections (LSWI/EWI) have gained popularity as effective techniques for enhancing oil recovery. Surfactant flooding is also a well-established and commercially-available technique in the oil and gas industry. In this paper, a numerical 2D simulation model was developed to investigate the effect of hybrid surfactant-LSWI/EWI on oil recovery from carbonate cores under harsh conditions. The developed simulation model was validated by history-matching recently conducted surfactant corefloods in the secondary mode of injection. Oil recovery, pressure drop, and surfactant concentration data were utilized. The surfactant flooding model was then coupled with a geochemical model that captures different reactions during LSWI/EWI. The geochemical reactions considered include aqueous, dissolution/precipitation, and ion-exchange reactions. Different simulation scenarios were considered and compared including waterflooding, surfactant flooding, engineered water injection, hybrid surfactant-EWI, and hybrid surfactant-LSWI. Additionally, sensitivity analysis was performed on the hybrid surfactant-EWI process through capturing changes in surfactant injected concentration and adsorption.\\n For the case of LSWI/EWI, wettability alteration was considered as the main mechanism underlying incremental oil recovery. However, both wettability alteration and interfacial tension reduction mechanisms were considered for surfactant flooding depending on the type of surfactant used. The results showed that the hybrid surfactant-EWI altered the wettability and achieved higher oil recovery than that of surfactant-LSWI and other techniques. This highlights the importance of selecting the right combinations of potential ions for a certain reservoir to maximize oil recovery rather than a simple water dilution. The results also highlight the importance of surfactant adsorption and surfactant concentration for the hybrid surfactant-EWI technique. This work provides insights into the application of hybrid surfactant-LSWI/EWI on oil recovery especially in carbonates. The novelty of this work is further expanded through comparing surfactant-LSWI with surfactant-EWI and understanding the controlling parameters of surfactant-EWI through sensitivity analysis.\",\"PeriodicalId\":11072,\"journal\":{\"name\":\"Day 1 Mon, August 16, 2021\",\"volume\":\"2677 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Mon, August 16, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4043/31128-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, August 16, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/31128-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A New Insight into Hybrid Surfactant and Low Salinity/Engineered Water Injections in Carbonates Through Geochemical Modeling
Low salinity/engineered water injections (LSWI/EWI) have gained popularity as effective techniques for enhancing oil recovery. Surfactant flooding is also a well-established and commercially-available technique in the oil and gas industry. In this paper, a numerical 2D simulation model was developed to investigate the effect of hybrid surfactant-LSWI/EWI on oil recovery from carbonate cores under harsh conditions. The developed simulation model was validated by history-matching recently conducted surfactant corefloods in the secondary mode of injection. Oil recovery, pressure drop, and surfactant concentration data were utilized. The surfactant flooding model was then coupled with a geochemical model that captures different reactions during LSWI/EWI. The geochemical reactions considered include aqueous, dissolution/precipitation, and ion-exchange reactions. Different simulation scenarios were considered and compared including waterflooding, surfactant flooding, engineered water injection, hybrid surfactant-EWI, and hybrid surfactant-LSWI. Additionally, sensitivity analysis was performed on the hybrid surfactant-EWI process through capturing changes in surfactant injected concentration and adsorption.
For the case of LSWI/EWI, wettability alteration was considered as the main mechanism underlying incremental oil recovery. However, both wettability alteration and interfacial tension reduction mechanisms were considered for surfactant flooding depending on the type of surfactant used. The results showed that the hybrid surfactant-EWI altered the wettability and achieved higher oil recovery than that of surfactant-LSWI and other techniques. This highlights the importance of selecting the right combinations of potential ions for a certain reservoir to maximize oil recovery rather than a simple water dilution. The results also highlight the importance of surfactant adsorption and surfactant concentration for the hybrid surfactant-EWI technique. This work provides insights into the application of hybrid surfactant-LSWI/EWI on oil recovery especially in carbonates. The novelty of this work is further expanded through comparing surfactant-LSWI with surfactant-EWI and understanding the controlling parameters of surfactant-EWI through sensitivity analysis.