多集的简单维恩图

Aurelian Radoaca
{"title":"多集的简单维恩图","authors":"Aurelian Radoaca","doi":"10.1109/SYNASC.2015.36","DOIUrl":null,"url":null,"abstract":"We introduce Venn diagrams for multisets and showhow they simplify the analysis of multisets. Venn diagrams arevery useful in proofs involving multisets and multiset orders, especially considering the complications introduced by the multiplicity of elements in multisets. We compare the Venn diagramsfor multisets with the corresponding ones for sets. Thus, wepresent two types of Venn diagrams for multisets, a simple onethat looks like a diagram for sets, but with areas that are notnecessarily disjoint, and a complex one (compared to sets), butwith certain delimited disjoint areas.","PeriodicalId":6488,"journal":{"name":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"98 1","pages":"181-184"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Simple Venn Diagrams for Multisets\",\"authors\":\"Aurelian Radoaca\",\"doi\":\"10.1109/SYNASC.2015.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce Venn diagrams for multisets and showhow they simplify the analysis of multisets. Venn diagrams arevery useful in proofs involving multisets and multiset orders, especially considering the complications introduced by the multiplicity of elements in multisets. We compare the Venn diagramsfor multisets with the corresponding ones for sets. Thus, wepresent two types of Venn diagrams for multisets, a simple onethat looks like a diagram for sets, but with areas that are notnecessarily disjoint, and a complex one (compared to sets), butwith certain delimited disjoint areas.\",\"PeriodicalId\":6488,\"journal\":{\"name\":\"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"98 1\",\"pages\":\"181-184\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2015.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2015.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们介绍了多集的维恩图,并证明了它简化了多集的分析。维恩图在涉及多集和多集阶的证明中非常有用,特别是考虑到多集中元素的多重性所带来的复杂性。我们将多集的维恩图与相应的集的维恩图进行比较。因此,我们提出了两种类型的多集维恩图,一种是简单的维恩图,看起来像集合的图,但有不一定不相交的区域,另一种是复杂的维恩图(与集合相比),但有一定的分隔不相交的区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simple Venn Diagrams for Multisets
We introduce Venn diagrams for multisets and showhow they simplify the analysis of multisets. Venn diagrams arevery useful in proofs involving multisets and multiset orders, especially considering the complications introduced by the multiplicity of elements in multisets. We compare the Venn diagramsfor multisets with the corresponding ones for sets. Thus, wepresent two types of Venn diagrams for multisets, a simple onethat looks like a diagram for sets, but with areas that are notnecessarily disjoint, and a complex one (compared to sets), butwith certain delimited disjoint areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信