{"title":"线性比率和问题的基于输出空间的分支定界算法","authors":"Bo Zhang, Yuelin Gao","doi":"10.1142/s0217595922500105","DOIUrl":null,"url":null,"abstract":"Founded on the idea of subdividing the [Formula: see text]-dimensional output space, a branch-and-bound algorithm for solving the sum-of-linear-ratios(SLR) problem is proposed. First, a two-stage equivalent transformation method is adopted to obtain an equivalent problem(EP) for the problem SLR. Second, by dealing with all nonlinear constraints and bilinear terms in EP and its sub-problems, a corresponding convex relaxation subproblem is obtained. Third, all redundant constraints in each convex relaxation subproblem are eliminated, which leads to a linear programming problem with smaller scale and fewer constraints. Finally, the theoretical convergence and computational complexity of the algorithm are demonstrated, and a series of numerical experiments illustrate the effectiveness and feasibility of the proposed algorithm.","PeriodicalId":8478,"journal":{"name":"Asia Pac. J. Oper. Res.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Output-Space Based Branch-and-Bound Algorithm for Sum-of-Linear-Ratios Problem\",\"authors\":\"Bo Zhang, Yuelin Gao\",\"doi\":\"10.1142/s0217595922500105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Founded on the idea of subdividing the [Formula: see text]-dimensional output space, a branch-and-bound algorithm for solving the sum-of-linear-ratios(SLR) problem is proposed. First, a two-stage equivalent transformation method is adopted to obtain an equivalent problem(EP) for the problem SLR. Second, by dealing with all nonlinear constraints and bilinear terms in EP and its sub-problems, a corresponding convex relaxation subproblem is obtained. Third, all redundant constraints in each convex relaxation subproblem are eliminated, which leads to a linear programming problem with smaller scale and fewer constraints. Finally, the theoretical convergence and computational complexity of the algorithm are demonstrated, and a series of numerical experiments illustrate the effectiveness and feasibility of the proposed algorithm.\",\"PeriodicalId\":8478,\"journal\":{\"name\":\"Asia Pac. J. Oper. Res.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia Pac. J. Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217595922500105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia Pac. J. Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0217595922500105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Output-Space Based Branch-and-Bound Algorithm for Sum-of-Linear-Ratios Problem
Founded on the idea of subdividing the [Formula: see text]-dimensional output space, a branch-and-bound algorithm for solving the sum-of-linear-ratios(SLR) problem is proposed. First, a two-stage equivalent transformation method is adopted to obtain an equivalent problem(EP) for the problem SLR. Second, by dealing with all nonlinear constraints and bilinear terms in EP and its sub-problems, a corresponding convex relaxation subproblem is obtained. Third, all redundant constraints in each convex relaxation subproblem are eliminated, which leads to a linear programming problem with smaller scale and fewer constraints. Finally, the theoretical convergence and computational complexity of the algorithm are demonstrated, and a series of numerical experiments illustrate the effectiveness and feasibility of the proposed algorithm.