描述距离无符号拉普拉斯谱半径上的奇因子[1,b]

Sizhong Zhou, Hong-xia Liu
{"title":"描述距离无符号拉普拉斯谱半径上的奇因子[1,b]","authors":"Sizhong Zhou, Hong-xia Liu","doi":"10.1051/ro/2023069","DOIUrl":null,"url":null,"abstract":"Let G be a connected graph of even order n. An odd [1,b]-factor of G is a spanning subgraph F of G such that dF(v) ∈ {1,3,5,··· ,b} for any v ∈ V (G), where b is positive odd integer. The distance matrix D(G) of G is a symmetric real matrix with (i,j)-entry being the distance between the vertices vi and vj. The distance signless Laplacian matrix Q(G) of G is defined by Q(G) = Tr(G) + D(G), where Tr(G) is the diagonal matrix of the vertex transmissions in G. The largest eigenvalue η1(G) of Q(G) is called the distance signless Laplacian spectral radius of G. In this paper, we verify sharp upper bounds on the distance signless Laplacian spectral radius to guarantee the existence of an odd [1,b]-factor in a graph; we provide some graphs to show that the bounds are optimal.","PeriodicalId":20872,"journal":{"name":"RAIRO Oper. Res.","volume":"59 1","pages":"1343-1351"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Characterizing an odd [1, b]-factor on the distance signless Laplacian spectral radius\",\"authors\":\"Sizhong Zhou, Hong-xia Liu\",\"doi\":\"10.1051/ro/2023069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a connected graph of even order n. An odd [1,b]-factor of G is a spanning subgraph F of G such that dF(v) ∈ {1,3,5,··· ,b} for any v ∈ V (G), where b is positive odd integer. The distance matrix D(G) of G is a symmetric real matrix with (i,j)-entry being the distance between the vertices vi and vj. The distance signless Laplacian matrix Q(G) of G is defined by Q(G) = Tr(G) + D(G), where Tr(G) is the diagonal matrix of the vertex transmissions in G. The largest eigenvalue η1(G) of Q(G) is called the distance signless Laplacian spectral radius of G. In this paper, we verify sharp upper bounds on the distance signless Laplacian spectral radius to guarantee the existence of an odd [1,b]-factor in a graph; we provide some graphs to show that the bounds are optimal.\",\"PeriodicalId\":20872,\"journal\":{\"name\":\"RAIRO Oper. Res.\",\"volume\":\"59 1\",\"pages\":\"1343-1351\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ro/2023069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ro/2023069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设G是一个偶n阶的连通图。G的一个奇[1,b]因子是G的一个生成子图F,使得对于任意v∈v (G), dF(v)∈{1,3,5,···,b},其中b为正奇数。G的距离矩阵D(G)是一个对称实矩阵,其中(i,j)项是顶点vi和vj之间的距离。G的距离无符号拉普拉斯矩阵Q(G)定义为Q(G) = Tr(G) + D(G),其中Tr(G)是G中顶点传输的对角矩阵。Q(G)的最大特征值η1(G)称为G的距离无符号拉普拉斯谱半径。本文验证了距离无符号拉普拉斯谱半径的尖锐上界,以保证图中存在奇因子[1,b];我们提供了一些图来证明边界是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing an odd [1, b]-factor on the distance signless Laplacian spectral radius
Let G be a connected graph of even order n. An odd [1,b]-factor of G is a spanning subgraph F of G such that dF(v) ∈ {1,3,5,··· ,b} for any v ∈ V (G), where b is positive odd integer. The distance matrix D(G) of G is a symmetric real matrix with (i,j)-entry being the distance between the vertices vi and vj. The distance signless Laplacian matrix Q(G) of G is defined by Q(G) = Tr(G) + D(G), where Tr(G) is the diagonal matrix of the vertex transmissions in G. The largest eigenvalue η1(G) of Q(G) is called the distance signless Laplacian spectral radius of G. In this paper, we verify sharp upper bounds on the distance signless Laplacian spectral radius to guarantee the existence of an odd [1,b]-factor in a graph; we provide some graphs to show that the bounds are optimal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信