{"title":"0.1 M醋酸溶液去除纳米级零价铁改性土壤中的Cd、Cu、Ni和Pb","authors":"V. Danila, T. Januševičius","doi":"10.2478/rtuect-2022-0031","DOIUrl":null,"url":null,"abstract":"Abstract The purpose of the study was to evaluate the possibility of removing heavy metal cations from single-metal spiked soil samples, which were pretreated with nanoscale zero-valent iron (nZVI) particles. Sandy soil was artificially contaminated with copper (Cu), cadmium (Cd), nickel (Ni), and lead (Pb). Contaminated soil samples were amended with different doses of nZVI (0.35, 0.70 and 1.05 %). A sequential extraction method was used to determine the fractionation of heavy metal cations in the control and nZVI amended soil samples. A solution of 0.1 M acetic acid (pH 3.0) was used to investigate the removal of heavy metals from control and nZVI-amended soil samples. The results showed that nZVI reduced the amount of metals in the exchangeable form and increased the proportion of these metals associated with amorphous iron (Fe) oxides. The results also showed that the removal efficiencies of heavy metals increased with increasing nZVI dose, that is, from 46.9 %, 5.77 %, 33.5 %, and 2.70 % to 55.9 %, 12.3 %, 46.2 %, and 3.79 % for Cd, Cu, Ni, and Pb, respectively. The study indicated that the application of nZVI in soil could be beneficial for subsequent removal of heavy metals from soil using 0.1 M acetic acid solution.","PeriodicalId":46053,"journal":{"name":"Environmental and Climate Technologies","volume":"12 1","pages":"406 - 414"},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Removal of Cd, Cu, Ni, and Pb from Nanoscale Zero-Valent Iron Amended Soil Using 0.1 M Acetic Acid Solution\",\"authors\":\"V. Danila, T. Januševičius\",\"doi\":\"10.2478/rtuect-2022-0031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The purpose of the study was to evaluate the possibility of removing heavy metal cations from single-metal spiked soil samples, which were pretreated with nanoscale zero-valent iron (nZVI) particles. Sandy soil was artificially contaminated with copper (Cu), cadmium (Cd), nickel (Ni), and lead (Pb). Contaminated soil samples were amended with different doses of nZVI (0.35, 0.70 and 1.05 %). A sequential extraction method was used to determine the fractionation of heavy metal cations in the control and nZVI amended soil samples. A solution of 0.1 M acetic acid (pH 3.0) was used to investigate the removal of heavy metals from control and nZVI-amended soil samples. The results showed that nZVI reduced the amount of metals in the exchangeable form and increased the proportion of these metals associated with amorphous iron (Fe) oxides. The results also showed that the removal efficiencies of heavy metals increased with increasing nZVI dose, that is, from 46.9 %, 5.77 %, 33.5 %, and 2.70 % to 55.9 %, 12.3 %, 46.2 %, and 3.79 % for Cd, Cu, Ni, and Pb, respectively. The study indicated that the application of nZVI in soil could be beneficial for subsequent removal of heavy metals from soil using 0.1 M acetic acid solution.\",\"PeriodicalId\":46053,\"journal\":{\"name\":\"Environmental and Climate Technologies\",\"volume\":\"12 1\",\"pages\":\"406 - 414\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Climate Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/rtuect-2022-0031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Climate Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rtuect-2022-0031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Removal of Cd, Cu, Ni, and Pb from Nanoscale Zero-Valent Iron Amended Soil Using 0.1 M Acetic Acid Solution
Abstract The purpose of the study was to evaluate the possibility of removing heavy metal cations from single-metal spiked soil samples, which were pretreated with nanoscale zero-valent iron (nZVI) particles. Sandy soil was artificially contaminated with copper (Cu), cadmium (Cd), nickel (Ni), and lead (Pb). Contaminated soil samples were amended with different doses of nZVI (0.35, 0.70 and 1.05 %). A sequential extraction method was used to determine the fractionation of heavy metal cations in the control and nZVI amended soil samples. A solution of 0.1 M acetic acid (pH 3.0) was used to investigate the removal of heavy metals from control and nZVI-amended soil samples. The results showed that nZVI reduced the amount of metals in the exchangeable form and increased the proportion of these metals associated with amorphous iron (Fe) oxides. The results also showed that the removal efficiencies of heavy metals increased with increasing nZVI dose, that is, from 46.9 %, 5.77 %, 33.5 %, and 2.70 % to 55.9 %, 12.3 %, 46.2 %, and 3.79 % for Cd, Cu, Ni, and Pb, respectively. The study indicated that the application of nZVI in soil could be beneficial for subsequent removal of heavy metals from soil using 0.1 M acetic acid solution.
期刊介绍:
Environmental and Climate Technologies provides a forum for information on innovation, research and development in the areas of environmental science, energy resources and processes, innovative technologies and energy efficiency. Authors are encouraged to submit manuscripts which cover the range from bioeconomy, sustainable technology development, life cycle analysis, eco-design, climate change mitigation, innovative solutions for pollution reduction to resilience, the energy efficiency of buildings, secure and sustainable energy supplies. The Journal ensures international publicity for original research and innovative work. A variety of themes are covered through a multi-disciplinary approach, one which integrates all aspects of environmental science: -Sustainability of technology development- Bioeconomy- Cleaner production, end of pipe production- Zero emission technologies- Eco-design- Life cycle analysis- Eco-efficiency- Environmental impact assessment- Environmental management systems- Resilience- Energy and carbon markets- Greenhouse gas emission reduction and climate technologies- Methodologies for the evaluation of sustainability- Renewable energy resources- Solar, wind, geothermal, hydro energy, biomass sources: algae, wood, straw, biogas, energetic plants and organic waste- Waste management- Quality of outdoor and indoor environment- Environmental monitoring and evaluation- Heat and power generation, including district heating and/or cooling- Energy efficiency.