Paul Adrian E. Divino, Michelle P. Prunes, Kevin O. Maglinte
{"title":"采用纹波控制的单电感多输出(SIMO)升压DC-DC变换器用于超低功耗室内光能收集应用","authors":"Paul Adrian E. Divino, Michelle P. Prunes, Kevin O. Maglinte","doi":"10.1109/HNICEM48295.2019.9072862","DOIUrl":null,"url":null,"abstract":"A Single-Inductor Multiple-Output (SIMO) Boost DC-DC Converter that operates for Ultra-Low Power (ULP) Applications is designed in 65nm TSMC technology. The converter boosts and regulates three output voltages using Ripple-Based Control of Pulse Frequency Modulation (PFM) while operating in Discontinuous Conduction Mode (DCM). To control the regulation of the output voltages, its control system follows an algorithm that is converted into digital logic circuits and helps in synchronizing the power MOS switching in the power stage. Aside from using Ripple- Based Control and DCM operation, the designed converter also uses a Strong-Arm comparator, which has no power consumption during its idle state to help ensure good power conversion efficiency of the system, making it suitable for the target application. This converter is suitable for indoor applications, for its input voltage could vary from 0.4V, for low light intensity situation, to 0.6V. With output voltages of 1.2V for analog core and two 1 V for digital cores, the converter shows excellent overall transient response and a peak power efficiency of 86% at 1mA load current.","PeriodicalId":6733,"journal":{"name":"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )","volume":"97 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Single-Inductor Multiple-Output (SIMO) Boost DC-DC Converter using Ripple-Based Control for Ultra-Low Power Indoor Light Energy Harvesting Applications\",\"authors\":\"Paul Adrian E. Divino, Michelle P. Prunes, Kevin O. Maglinte\",\"doi\":\"10.1109/HNICEM48295.2019.9072862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Single-Inductor Multiple-Output (SIMO) Boost DC-DC Converter that operates for Ultra-Low Power (ULP) Applications is designed in 65nm TSMC technology. The converter boosts and regulates three output voltages using Ripple-Based Control of Pulse Frequency Modulation (PFM) while operating in Discontinuous Conduction Mode (DCM). To control the regulation of the output voltages, its control system follows an algorithm that is converted into digital logic circuits and helps in synchronizing the power MOS switching in the power stage. Aside from using Ripple- Based Control and DCM operation, the designed converter also uses a Strong-Arm comparator, which has no power consumption during its idle state to help ensure good power conversion efficiency of the system, making it suitable for the target application. This converter is suitable for indoor applications, for its input voltage could vary from 0.4V, for low light intensity situation, to 0.6V. With output voltages of 1.2V for analog core and two 1 V for digital cores, the converter shows excellent overall transient response and a peak power efficiency of 86% at 1mA load current.\",\"PeriodicalId\":6733,\"journal\":{\"name\":\"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )\",\"volume\":\"97 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HNICEM48295.2019.9072862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM48295.2019.9072862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Single-Inductor Multiple-Output (SIMO) Boost DC-DC Converter using Ripple-Based Control for Ultra-Low Power Indoor Light Energy Harvesting Applications
A Single-Inductor Multiple-Output (SIMO) Boost DC-DC Converter that operates for Ultra-Low Power (ULP) Applications is designed in 65nm TSMC technology. The converter boosts and regulates three output voltages using Ripple-Based Control of Pulse Frequency Modulation (PFM) while operating in Discontinuous Conduction Mode (DCM). To control the regulation of the output voltages, its control system follows an algorithm that is converted into digital logic circuits and helps in synchronizing the power MOS switching in the power stage. Aside from using Ripple- Based Control and DCM operation, the designed converter also uses a Strong-Arm comparator, which has no power consumption during its idle state to help ensure good power conversion efficiency of the system, making it suitable for the target application. This converter is suitable for indoor applications, for its input voltage could vary from 0.4V, for low light intensity situation, to 0.6V. With output voltages of 1.2V for analog core and two 1 V for digital cores, the converter shows excellent overall transient response and a peak power efficiency of 86% at 1mA load current.