聚丙烯(PP)泡沫向增塑型超材料的转化

Macromol Pub Date : 2023-07-21 DOI:10.3390/macromol3030028
Xiao-Yuan Chen, D. Rodrigue
{"title":"聚丙烯(PP)泡沫向增塑型超材料的转化","authors":"Xiao-Yuan Chen, D. Rodrigue","doi":"10.3390/macromol3030028","DOIUrl":null,"url":null,"abstract":"In this work, a simple and environmentally friendly process combining low pressure (vacuum) and mechanical compression is proposed to convert recycled polypropylene (PP) foams (28 kg/m3) into low density foams (90–131 kg/m3) having negative tensile and compressive Poisson’s ratios (NPR). The main objective of the work was to determine the effect of processing conditions (vacuum time, temperature and mechanical pressure). Based on the optimized conditions, the tensile Poisson’s ratio of the resulting auxetic foams reached −1.50, while the minimum compressive Poisson’s ratio was −0.32 for the same sample. The foam structure was characterized via morphological analysis (SEM) to determine any changes related to the treatment applied. Finally, the tensile and compressive properties (Young’s modulus, strain energy, energy dissipation and damping capacity) are also presented and discussed. It was observed that the mechanical properties of the resulting auxetic foams were improved compared to the original PP foam (PP-O) for all tensile properties in terms of modulus (19.9 to 59.8 kPa), strength (0.298 to 1.43 kPa) elongation at break (28 to 77%), energy dissipation (14.4 to 56.3 mJ/cm3) and damping capacity (12 to 19%). Nevertheless, improvements were also observed under compression in terms of the energy dissipation (1.6 to 3.6 mJ/cm3) and the damping capacity (13 to 19%). These auxetic foams can find applications in sport and military protective equipment, as well as any energy mitigation system.","PeriodicalId":18139,"journal":{"name":"Macromol","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conversion of Polypropylene (PP) Foams into Auxetic Metamaterials\",\"authors\":\"Xiao-Yuan Chen, D. Rodrigue\",\"doi\":\"10.3390/macromol3030028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a simple and environmentally friendly process combining low pressure (vacuum) and mechanical compression is proposed to convert recycled polypropylene (PP) foams (28 kg/m3) into low density foams (90–131 kg/m3) having negative tensile and compressive Poisson’s ratios (NPR). The main objective of the work was to determine the effect of processing conditions (vacuum time, temperature and mechanical pressure). Based on the optimized conditions, the tensile Poisson’s ratio of the resulting auxetic foams reached −1.50, while the minimum compressive Poisson’s ratio was −0.32 for the same sample. The foam structure was characterized via morphological analysis (SEM) to determine any changes related to the treatment applied. Finally, the tensile and compressive properties (Young’s modulus, strain energy, energy dissipation and damping capacity) are also presented and discussed. It was observed that the mechanical properties of the resulting auxetic foams were improved compared to the original PP foam (PP-O) for all tensile properties in terms of modulus (19.9 to 59.8 kPa), strength (0.298 to 1.43 kPa) elongation at break (28 to 77%), energy dissipation (14.4 to 56.3 mJ/cm3) and damping capacity (12 to 19%). Nevertheless, improvements were also observed under compression in terms of the energy dissipation (1.6 to 3.6 mJ/cm3) and the damping capacity (13 to 19%). These auxetic foams can find applications in sport and military protective equipment, as well as any energy mitigation system.\",\"PeriodicalId\":18139,\"journal\":{\"name\":\"Macromol\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromol\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/macromol3030028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/macromol3030028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,提出了一种简单而环保的方法,将低压(真空)和机械压缩相结合,将回收的聚丙烯(PP)泡沫(28 kg/m3)转化为具有负拉伸和压缩泊松比(NPR)的低密度泡沫(90-131 kg/m3)。这项工作的主要目的是确定加工条件(真空时间、温度和机械压力)的影响。在此优化条件下,同一试样的拉伸泊松比达到- 1.50,压缩泊松比最小值为- 0.32。通过形态分析(SEM)表征泡沫结构,以确定与处理有关的任何变化。最后,给出并讨论了材料的拉伸和压缩性能(杨氏模量、应变能、能量耗散和阻尼能力)。结果表明,与原PP泡沫(PP- o)相比,合成的助燃泡沫的力学性能在模量(19.9 ~ 59.8 kPa)、强度(0.298 ~ 1.43 kPa)、断裂伸长率(28 ~ 77%)、能量耗散(14.4 ~ 56.3 mJ/cm3)和阻尼能力(12 ~ 19%)等方面均有改善。然而,在压缩条件下,也观察到能量耗散(1.6至3.6 mJ/cm3)和阻尼能力(13%至19%)的改善。这些消声泡沫可以在运动和军事防护设备中找到应用,以及任何能源缓解系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conversion of Polypropylene (PP) Foams into Auxetic Metamaterials
In this work, a simple and environmentally friendly process combining low pressure (vacuum) and mechanical compression is proposed to convert recycled polypropylene (PP) foams (28 kg/m3) into low density foams (90–131 kg/m3) having negative tensile and compressive Poisson’s ratios (NPR). The main objective of the work was to determine the effect of processing conditions (vacuum time, temperature and mechanical pressure). Based on the optimized conditions, the tensile Poisson’s ratio of the resulting auxetic foams reached −1.50, while the minimum compressive Poisson’s ratio was −0.32 for the same sample. The foam structure was characterized via morphological analysis (SEM) to determine any changes related to the treatment applied. Finally, the tensile and compressive properties (Young’s modulus, strain energy, energy dissipation and damping capacity) are also presented and discussed. It was observed that the mechanical properties of the resulting auxetic foams were improved compared to the original PP foam (PP-O) for all tensile properties in terms of modulus (19.9 to 59.8 kPa), strength (0.298 to 1.43 kPa) elongation at break (28 to 77%), energy dissipation (14.4 to 56.3 mJ/cm3) and damping capacity (12 to 19%). Nevertheless, improvements were also observed under compression in terms of the energy dissipation (1.6 to 3.6 mJ/cm3) and the damping capacity (13 to 19%). These auxetic foams can find applications in sport and military protective equipment, as well as any energy mitigation system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信