用离散选择实验增强基于agent的模型

Stefan Holm, R. Lemm, O. Thees, L. Hilty
{"title":"用离散选择实验增强基于agent的模型","authors":"Stefan Holm, R. Lemm, O. Thees, L. Hilty","doi":"10.18564/jasss.3121","DOIUrl":null,"url":null,"abstract":"Agent-based modeling is a promising method to investigate market dynamics, as it allows modeling the behavior of all market participants individually. Integrating empirical data in the agents’ decision model can improve the validity of agent-based models (ABMs). We present an approach of using discrete choice experiments (DCEs) to enhance the empirical foundation of ABMs. The DCE method is based on random utility theory and therefore has the potential to enhance the ABM approach with a well-established economic theory. Our combined approach is applied to a case study of a roundwood market in Switzerland. We conducted DCEs with roundwood suppliers to quantitatively characterize the agents’ decision model. We evaluate our approach using a fitness measure and compare two DCE evaluation methods, latent class analysis and hierarchical Bayes. Additionally, we analyze the influence of the error term of the utility function on the simulation results and present a way to estimate its probability distribution.","PeriodicalId":14675,"journal":{"name":"J. Artif. Soc. Soc. Simul.","volume":"98 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Enhancing Agent-Based Models with Discrete Choice Experiments\",\"authors\":\"Stefan Holm, R. Lemm, O. Thees, L. Hilty\",\"doi\":\"10.18564/jasss.3121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Agent-based modeling is a promising method to investigate market dynamics, as it allows modeling the behavior of all market participants individually. Integrating empirical data in the agents’ decision model can improve the validity of agent-based models (ABMs). We present an approach of using discrete choice experiments (DCEs) to enhance the empirical foundation of ABMs. The DCE method is based on random utility theory and therefore has the potential to enhance the ABM approach with a well-established economic theory. Our combined approach is applied to a case study of a roundwood market in Switzerland. We conducted DCEs with roundwood suppliers to quantitatively characterize the agents’ decision model. We evaluate our approach using a fitness measure and compare two DCE evaluation methods, latent class analysis and hierarchical Bayes. Additionally, we analyze the influence of the error term of the utility function on the simulation results and present a way to estimate its probability distribution.\",\"PeriodicalId\":14675,\"journal\":{\"name\":\"J. Artif. Soc. Soc. Simul.\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Artif. Soc. Soc. Simul.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18564/jasss.3121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Artif. Soc. Soc. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18564/jasss.3121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

基于主体的建模是研究市场动态的一种很有前途的方法,因为它允许对所有市场参与者的行为进行单独建模。将经验数据集成到agent决策模型中可以提高基于agent的模型的有效性。我们提出了一种使用离散选择实验(DCEs)来增强ABMs的经验基础的方法。DCE方法基于随机效用理论,因此有潜力通过完善的经济理论来增强ABM方法。我们的联合方法应用于瑞士圆木市场的案例研究。我们与圆木供应商进行了dce,以定量表征代理商决策模型。我们使用适应度度量来评估我们的方法,并比较两种DCE评估方法,潜在类分析和层次贝叶斯。此外,我们还分析了效用函数的误差项对仿真结果的影响,并提出了一种估计其概率分布的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Agent-Based Models with Discrete Choice Experiments
Agent-based modeling is a promising method to investigate market dynamics, as it allows modeling the behavior of all market participants individually. Integrating empirical data in the agents’ decision model can improve the validity of agent-based models (ABMs). We present an approach of using discrete choice experiments (DCEs) to enhance the empirical foundation of ABMs. The DCE method is based on random utility theory and therefore has the potential to enhance the ABM approach with a well-established economic theory. Our combined approach is applied to a case study of a roundwood market in Switzerland. We conducted DCEs with roundwood suppliers to quantitatively characterize the agents’ decision model. We evaluate our approach using a fitness measure and compare two DCE evaluation methods, latent class analysis and hierarchical Bayes. Additionally, we analyze the influence of the error term of the utility function on the simulation results and present a way to estimate its probability distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信