SIR模型的渐近分析。COVID-19模型的应用

viXra Pub Date : 2021-03-22 DOI:10.21203/RS.3.RS-255095/V1
D. Prodanov
{"title":"SIR模型的渐近分析。COVID-19模型的应用","authors":"D. Prodanov","doi":"10.21203/RS.3.RS-255095/V1","DOIUrl":null,"url":null,"abstract":"\n The SIR (Susceptible-Infected-Removed) model can be very useful in modelling epidemic outbreaks. The present paper derives the parametric solution of the model in terms of quadratures. The paper demonstrates a simple analytical asymptotic solution for the I-variable, which is valid on the entire real line. Moreover, the solution can be used successfully for parametric estimation either in stand-alone mode or as a preliminary step in the parametric estimation using numerical inversion of the parametric solution. The approach is applied to the ongoing coronavirus disease 2019 (COVID-19) pandemic in three European countries --Belgium, Italy and Sweden.","PeriodicalId":23650,"journal":{"name":"viXra","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymptotic analysis of the SIR model. Applications to COVID-19 modelling\",\"authors\":\"D. Prodanov\",\"doi\":\"10.21203/RS.3.RS-255095/V1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The SIR (Susceptible-Infected-Removed) model can be very useful in modelling epidemic outbreaks. The present paper derives the parametric solution of the model in terms of quadratures. The paper demonstrates a simple analytical asymptotic solution for the I-variable, which is valid on the entire real line. Moreover, the solution can be used successfully for parametric estimation either in stand-alone mode or as a preliminary step in the parametric estimation using numerical inversion of the parametric solution. The approach is applied to the ongoing coronavirus disease 2019 (COVID-19) pandemic in three European countries --Belgium, Italy and Sweden.\",\"PeriodicalId\":23650,\"journal\":{\"name\":\"viXra\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"viXra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/RS.3.RS-255095/V1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"viXra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/RS.3.RS-255095/V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

SIR(易感-感染-去除)模型在模拟流行病暴发时非常有用。本文用正交的形式导出了该模型的参数解。本文给出了i变量的一个简单解析渐近解,它在整条实线上都是有效的。此外,该解可以成功地用于独立模式下的参数估计或作为参数估计的初步步骤,使用参数解的数值反演。该方法适用于正在比利时、意大利和瑞典三个欧洲国家进行的2019冠状病毒病(COVID-19)大流行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic analysis of the SIR model. Applications to COVID-19 modelling
The SIR (Susceptible-Infected-Removed) model can be very useful in modelling epidemic outbreaks. The present paper derives the parametric solution of the model in terms of quadratures. The paper demonstrates a simple analytical asymptotic solution for the I-variable, which is valid on the entire real line. Moreover, the solution can be used successfully for parametric estimation either in stand-alone mode or as a preliminary step in the parametric estimation using numerical inversion of the parametric solution. The approach is applied to the ongoing coronavirus disease 2019 (COVID-19) pandemic in three European countries --Belgium, Italy and Sweden.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信