遗传算法与蚁群算法在异构分类器集合属性选择中的比较分析

L. E. A. Santana, Ligia Silva, A. Canuto, F. Pintro, K. Vale
{"title":"遗传算法与蚁群算法在异构分类器集合属性选择中的比较分析","authors":"L. E. A. Santana, Ligia Silva, A. Canuto, F. Pintro, K. Vale","doi":"10.1109/CEC.2010.5586080","DOIUrl":null,"url":null,"abstract":"In the context of ensemble systems, feature selection methods can be used to provide different subsets of attributes for the individual classifiers, aiming to reduce redundancy among the attributes of a pattern and to increase the diversity in such systems. Among the several techniques that have been proposed in the literature, optimization methods have been used to find the optimal subset of attributes for an ensemble system. In this paper, an investigation of two optimization techniques, genetic algorithm and ant colony optimization, will be used to guide the distribution of the features among the classifiers. This analysis will be conducted in the context of heterogeneous ensembles and using different ensemble sizes.","PeriodicalId":6344,"journal":{"name":"2009 IEEE Congress on Evolutionary Computation","volume":"4 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"A comparative analysis of genetic algorithm and ant colony optimization to select attributes for an heterogeneous ensemble of classifiers\",\"authors\":\"L. E. A. Santana, Ligia Silva, A. Canuto, F. Pintro, K. Vale\",\"doi\":\"10.1109/CEC.2010.5586080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of ensemble systems, feature selection methods can be used to provide different subsets of attributes for the individual classifiers, aiming to reduce redundancy among the attributes of a pattern and to increase the diversity in such systems. Among the several techniques that have been proposed in the literature, optimization methods have been used to find the optimal subset of attributes for an ensemble system. In this paper, an investigation of two optimization techniques, genetic algorithm and ant colony optimization, will be used to guide the distribution of the features among the classifiers. This analysis will be conducted in the context of heterogeneous ensembles and using different ensemble sizes.\",\"PeriodicalId\":6344,\"journal\":{\"name\":\"2009 IEEE Congress on Evolutionary Computation\",\"volume\":\"4 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2010.5586080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2010.5586080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

在集成系统中,可以使用特征选择方法为单个分类器提供不同的属性子集,旨在减少模式属性之间的冗余,增加系统的多样性。在文献中提出的几种技术中,优化方法已用于寻找集成系统的最优属性子集。本文将研究遗传算法和蚁群优化两种优化技术,以指导分类器之间的特征分布。该分析将在异质集成和使用不同集成尺寸的背景下进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative analysis of genetic algorithm and ant colony optimization to select attributes for an heterogeneous ensemble of classifiers
In the context of ensemble systems, feature selection methods can be used to provide different subsets of attributes for the individual classifiers, aiming to reduce redundancy among the attributes of a pattern and to increase the diversity in such systems. Among the several techniques that have been proposed in the literature, optimization methods have been used to find the optimal subset of attributes for an ensemble system. In this paper, an investigation of two optimization techniques, genetic algorithm and ant colony optimization, will be used to guide the distribution of the features among the classifiers. This analysis will be conducted in the context of heterogeneous ensembles and using different ensemble sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信