住宅可再生能源应用的多相电隔离阻抗源DC-DC变换器

D. Vinnikov, A. Chub, E. Liivik
{"title":"住宅可再生能源应用的多相电隔离阻抗源DC-DC变换器","authors":"D. Vinnikov, A. Chub, E. Liivik","doi":"10.1109/ISIE.2017.8001517","DOIUrl":null,"url":null,"abstract":"In this paper, a novel topology of the high step-up multiphase galvanically isolated impedance-source DC-DC converter is proposed. It was derived by the input-parallel-output-parallel cascading of the asymmetrical quasi-Z-source half-bridge cells. The operating principle of the converter is explained by the steady state analysis. It was also demonstrated how the input current ripple of the converter could be decreased by increasing the number of interleaved phases. To validate our approach experimentally, a two-phase DC-DC converter with the power rating of 300 W was assembled. It was confirmed that the proposed converter is capable of ensuring the six-fold regulation of the input voltage with the maximum DC gain of 40 and peak efficiency of 94.5%.","PeriodicalId":6597,"journal":{"name":"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)","volume":"53 1","pages":"1775-1780"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multiphase galvanically isolated impedance-source DC-DC converter for residential renewable energy applications\",\"authors\":\"D. Vinnikov, A. Chub, E. Liivik\",\"doi\":\"10.1109/ISIE.2017.8001517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel topology of the high step-up multiphase galvanically isolated impedance-source DC-DC converter is proposed. It was derived by the input-parallel-output-parallel cascading of the asymmetrical quasi-Z-source half-bridge cells. The operating principle of the converter is explained by the steady state analysis. It was also demonstrated how the input current ripple of the converter could be decreased by increasing the number of interleaved phases. To validate our approach experimentally, a two-phase DC-DC converter with the power rating of 300 W was assembled. It was confirmed that the proposed converter is capable of ensuring the six-fold regulation of the input voltage with the maximum DC gain of 40 and peak efficiency of 94.5%.\",\"PeriodicalId\":6597,\"journal\":{\"name\":\"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)\",\"volume\":\"53 1\",\"pages\":\"1775-1780\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIE.2017.8001517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2017.8001517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种新的高升压多相电隔离阻抗源DC-DC变换器的拓扑结构。它是由非对称准z源半桥单元的输入-并联-输出-并联级联得到的。通过稳态分析,说明了变换器的工作原理。还演示了如何通过增加交错相数来降低转换器的输入电流纹波。为了实验验证我们的方法,我们组装了一个额定功率为300 W的两相DC-DC变换器。结果表明,该变换器能够保证输入电压的六倍调节,最大直流增益为40,峰值效率为94.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiphase galvanically isolated impedance-source DC-DC converter for residential renewable energy applications
In this paper, a novel topology of the high step-up multiphase galvanically isolated impedance-source DC-DC converter is proposed. It was derived by the input-parallel-output-parallel cascading of the asymmetrical quasi-Z-source half-bridge cells. The operating principle of the converter is explained by the steady state analysis. It was also demonstrated how the input current ripple of the converter could be decreased by increasing the number of interleaved phases. To validate our approach experimentally, a two-phase DC-DC converter with the power rating of 300 W was assembled. It was confirmed that the proposed converter is capable of ensuring the six-fold regulation of the input voltage with the maximum DC gain of 40 and peak efficiency of 94.5%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信