{"title":"1上断点的正则化高度的变化","authors":"Laura Demarco, Niki Myrto Mavraki","doi":"10.1515/crelle-2022-0078","DOIUrl":null,"url":null,"abstract":"Abstract Let f : ℙ 1 → ℙ 1 {f:\\mathbb{P}^{1}\\to\\mathbb{P}^{1}} be a map of degree > 1 {>1} defined over a function field k = K ( X ) {k=K(X)} , where K is a number field and X is a projective curve over K. For each point a ∈ ℙ 1 ( k ) {a\\in\\mathbb{P}^{1}(k)} satisfying a dynamical stability condition, we prove that the Call–Silverman canonical height for specialization f t {f_{t}} at point a t {a_{t}} , for t ∈ X ( ℚ ¯ ) {t\\in X(\\overline{\\mathbb{Q}})} outside a finite set, induces a Weil height on the curve X; i.e., we prove the existence of a ℚ {\\mathbb{Q}} -divisor D = D f , a {D=D_{f,a}} on X so that the function t ↦ h ^ f t ( a t ) - h D ( t ) {t\\mapsto\\hat{h}_{f_{t}}(a_{t})-h_{D}(t)} is bounded on X ( ℚ ¯ ) {X(\\overline{\\mathbb{Q}})} for any choice of Weil height associated to D. We also prove a local version, that the local canonical heights t ↦ λ ^ f t , v ( a t ) {t\\mapsto\\hat{\\lambda}_{f_{t},v}(a_{t})} differ from a Weil function for D by a continuous function on X ( ℂ v ) {X(\\mathbb{C}_{v})} , at each place v of the number field K. These results were known for polynomial maps f and all points a ∈ ℙ 1 ( k ) {a\\in\\mathbb{P}^{1}(k)} without the stability hypothesis, [21, 14], and for maps f that are quotients of endomorphisms of elliptic curves E over k and all points a ∈ ℙ 1 ( k ) {a\\in\\mathbb{P}^{1}(k)} . [32, 29]. Finally, we characterize our stability condition in terms of the geometry of the induced map f ~ : X × ℙ 1 ⇢ X × ℙ 1 {\\tilde{f}:X\\times\\mathbb{P}^{1}\\dashrightarrow X\\times\\mathbb{P}^{1}} over K; and we prove the existence of relative Néron models for the pair ( f , a ) {(f,a)} , when a is a Fatou point at a place γ of k, where the local canonical height λ ^ f , γ ( a ) {\\hat{\\lambda}_{f,\\gamma}(a)} can be computed as an intersection number.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"5 1","pages":"183 - 220"},"PeriodicalIF":1.2000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variation of canonical height for\\\\break Fatou points on ℙ1\",\"authors\":\"Laura Demarco, Niki Myrto Mavraki\",\"doi\":\"10.1515/crelle-2022-0078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let f : ℙ 1 → ℙ 1 {f:\\\\mathbb{P}^{1}\\\\to\\\\mathbb{P}^{1}} be a map of degree > 1 {>1} defined over a function field k = K ( X ) {k=K(X)} , where K is a number field and X is a projective curve over K. For each point a ∈ ℙ 1 ( k ) {a\\\\in\\\\mathbb{P}^{1}(k)} satisfying a dynamical stability condition, we prove that the Call–Silverman canonical height for specialization f t {f_{t}} at point a t {a_{t}} , for t ∈ X ( ℚ ¯ ) {t\\\\in X(\\\\overline{\\\\mathbb{Q}})} outside a finite set, induces a Weil height on the curve X; i.e., we prove the existence of a ℚ {\\\\mathbb{Q}} -divisor D = D f , a {D=D_{f,a}} on X so that the function t ↦ h ^ f t ( a t ) - h D ( t ) {t\\\\mapsto\\\\hat{h}_{f_{t}}(a_{t})-h_{D}(t)} is bounded on X ( ℚ ¯ ) {X(\\\\overline{\\\\mathbb{Q}})} for any choice of Weil height associated to D. We also prove a local version, that the local canonical heights t ↦ λ ^ f t , v ( a t ) {t\\\\mapsto\\\\hat{\\\\lambda}_{f_{t},v}(a_{t})} differ from a Weil function for D by a continuous function on X ( ℂ v ) {X(\\\\mathbb{C}_{v})} , at each place v of the number field K. These results were known for polynomial maps f and all points a ∈ ℙ 1 ( k ) {a\\\\in\\\\mathbb{P}^{1}(k)} without the stability hypothesis, [21, 14], and for maps f that are quotients of endomorphisms of elliptic curves E over k and all points a ∈ ℙ 1 ( k ) {a\\\\in\\\\mathbb{P}^{1}(k)} . [32, 29]. Finally, we characterize our stability condition in terms of the geometry of the induced map f ~ : X × ℙ 1 ⇢ X × ℙ 1 {\\\\tilde{f}:X\\\\times\\\\mathbb{P}^{1}\\\\dashrightarrow X\\\\times\\\\mathbb{P}^{1}} over K; and we prove the existence of relative Néron models for the pair ( f , a ) {(f,a)} , when a is a Fatou point at a place γ of k, where the local canonical height λ ^ f , γ ( a ) {\\\\hat{\\\\lambda}_{f,\\\\gamma}(a)} can be computed as an intersection number.\",\"PeriodicalId\":54896,\"journal\":{\"name\":\"Journal fur die Reine und Angewandte Mathematik\",\"volume\":\"5 1\",\"pages\":\"183 - 220\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal fur die Reine und Angewandte Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2022-0078\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2022-0078","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设f: 1→1 {f:\mathbb{P} ^{1}\to\mathbb{P} ^{1}}是定义在函数域k= k≠(X) k= k (X)上的度{>1 >1}的映射,其中k是一个数域,X是k上的一个投影曲线。对于{满足动态稳定性条件的每个点a∈<}s:3> {1¹(k) a \in\mathbb{P} ^1(k),我们证明了在点at {a_t}处,}对于t∈X≠(π¯){t {}}{{}}{\in X(\overline{\mathbb{Q}})在}有限集外,推导出曲线X上的韦尔高度;即,我们证明了在 {\mathbb{Q}} -因子D= df,a {D=D_f{,a,使得函数t∈h ^ f t¹(a t)-h D¹(t) t }}{\mapsto\hat{h} _f_t{(a_t{)}}- h_d{ (t)}对于任何与D相关的Weil高度的选择{都在}X²(π¯)X(}{\overline{\mathbb{Q}})上有界。我们还证明了一个局部版本,即局部正则高度t∈λ ^ f t,v≠(a t) t }{\mapsto\hat{\lambda} _f_t{,{v}(a_t)}与D的Weil函数不同,在{数域k的每个位置}v上,X≠(v) X(}{\mathbb{C} _v{)上有一个连续函数},这些结果对于多项式映射f和所有点a∈1≠(k) a }{\in\mathbb{P} ^{1}(k)是已知的,}没有稳定性假设,[21,14],对于映射f,它是椭圆曲线E / k的自同态商和所有点a∈1∑(k){ a \in\mathbb{P} ^{1}(k)}。[32,29]。最后,我们用诱导映射f的几何特征来描述我们的稳定性条件:X X²1讲解X X²1{\tilde{f}:X \times\mathbb{P} ^{1}\dashrightarrow X \times\mathbb{P} ^{1}} / K;并且证明了(f,a) (f,a)对(f,a)的相对n录影带模型的存在性,当a是在k点γ处的Fatou点,其中局部正则高度λ ^ f, γ¹(a) {}{\hat{\lambda} _f{, \gamma} (a)}可以计算为交点数。
Variation of canonical height for\break Fatou points on ℙ1
Abstract Let f : ℙ 1 → ℙ 1 {f:\mathbb{P}^{1}\to\mathbb{P}^{1}} be a map of degree > 1 {>1} defined over a function field k = K ( X ) {k=K(X)} , where K is a number field and X is a projective curve over K. For each point a ∈ ℙ 1 ( k ) {a\in\mathbb{P}^{1}(k)} satisfying a dynamical stability condition, we prove that the Call–Silverman canonical height for specialization f t {f_{t}} at point a t {a_{t}} , for t ∈ X ( ℚ ¯ ) {t\in X(\overline{\mathbb{Q}})} outside a finite set, induces a Weil height on the curve X; i.e., we prove the existence of a ℚ {\mathbb{Q}} -divisor D = D f , a {D=D_{f,a}} on X so that the function t ↦ h ^ f t ( a t ) - h D ( t ) {t\mapsto\hat{h}_{f_{t}}(a_{t})-h_{D}(t)} is bounded on X ( ℚ ¯ ) {X(\overline{\mathbb{Q}})} for any choice of Weil height associated to D. We also prove a local version, that the local canonical heights t ↦ λ ^ f t , v ( a t ) {t\mapsto\hat{\lambda}_{f_{t},v}(a_{t})} differ from a Weil function for D by a continuous function on X ( ℂ v ) {X(\mathbb{C}_{v})} , at each place v of the number field K. These results were known for polynomial maps f and all points a ∈ ℙ 1 ( k ) {a\in\mathbb{P}^{1}(k)} without the stability hypothesis, [21, 14], and for maps f that are quotients of endomorphisms of elliptic curves E over k and all points a ∈ ℙ 1 ( k ) {a\in\mathbb{P}^{1}(k)} . [32, 29]. Finally, we characterize our stability condition in terms of the geometry of the induced map f ~ : X × ℙ 1 ⇢ X × ℙ 1 {\tilde{f}:X\times\mathbb{P}^{1}\dashrightarrow X\times\mathbb{P}^{1}} over K; and we prove the existence of relative Néron models for the pair ( f , a ) {(f,a)} , when a is a Fatou point at a place γ of k, where the local canonical height λ ^ f , γ ( a ) {\hat{\lambda}_{f,\gamma}(a)} can be computed as an intersection number.
期刊介绍:
The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.