R. Parlikar, R. Chilwar, A. P. Keche, R. Dudhal, A. V. Raut, K. M. Jadhav
{"title":"甘氨酸辅助CoFe2O4纳米颗粒溶胶-凝胶合成及结构分析","authors":"R. Parlikar, R. Chilwar, A. P. Keche, R. Dudhal, A. V. Raut, K. M. Jadhav","doi":"10.1063/5.0061127","DOIUrl":null,"url":null,"abstract":"In this work, we tried to investigate the structural properties of cobalt ferrite (CoFe2O4) nanoparticles synthesized via the sol-gel auto-combustion method. The synthesis of cobalt ferrite was carried out by glycine assisted auto-ignition in the sol-gel method. The preparation conditions and sintering temperature during the synthesis creates additional phases in the respective materials, which may play an important role in several applications because of their controlled physical properties. Therefore, CoFe2O4 nanoparticles were considered as a good candidate for high-frequency applications. The X-ray diffraction study of CoFe2O4 nanoparticles was carried out for phase purity. XRD pattern revealed the presence of Bragg’s reflections which belong to the cubic spinel structure. The Miller indices (hkl) were identified using the standard method and the FWHM of the most intense peak (311) was used for the calculation of crystallite size. The crystallite size (t) was estimated using Debye-Scherrer’s formula and found to be 32.16 nm which is following our expectations.","PeriodicalId":18837,"journal":{"name":"NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM2020","volume":"92 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glycine assisted sol-gel synthesis and structural analysis of CoFe2O4 nanoparticles\",\"authors\":\"R. Parlikar, R. Chilwar, A. P. Keche, R. Dudhal, A. V. Raut, K. M. Jadhav\",\"doi\":\"10.1063/5.0061127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we tried to investigate the structural properties of cobalt ferrite (CoFe2O4) nanoparticles synthesized via the sol-gel auto-combustion method. The synthesis of cobalt ferrite was carried out by glycine assisted auto-ignition in the sol-gel method. The preparation conditions and sintering temperature during the synthesis creates additional phases in the respective materials, which may play an important role in several applications because of their controlled physical properties. Therefore, CoFe2O4 nanoparticles were considered as a good candidate for high-frequency applications. The X-ray diffraction study of CoFe2O4 nanoparticles was carried out for phase purity. XRD pattern revealed the presence of Bragg’s reflections which belong to the cubic spinel structure. The Miller indices (hkl) were identified using the standard method and the FWHM of the most intense peak (311) was used for the calculation of crystallite size. The crystallite size (t) was estimated using Debye-Scherrer’s formula and found to be 32.16 nm which is following our expectations.\",\"PeriodicalId\":18837,\"journal\":{\"name\":\"NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM2020\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0061127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0061127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Glycine assisted sol-gel synthesis and structural analysis of CoFe2O4 nanoparticles
In this work, we tried to investigate the structural properties of cobalt ferrite (CoFe2O4) nanoparticles synthesized via the sol-gel auto-combustion method. The synthesis of cobalt ferrite was carried out by glycine assisted auto-ignition in the sol-gel method. The preparation conditions and sintering temperature during the synthesis creates additional phases in the respective materials, which may play an important role in several applications because of their controlled physical properties. Therefore, CoFe2O4 nanoparticles were considered as a good candidate for high-frequency applications. The X-ray diffraction study of CoFe2O4 nanoparticles was carried out for phase purity. XRD pattern revealed the presence of Bragg’s reflections which belong to the cubic spinel structure. The Miller indices (hkl) were identified using the standard method and the FWHM of the most intense peak (311) was used for the calculation of crystallite size. The crystallite size (t) was estimated using Debye-Scherrer’s formula and found to be 32.16 nm which is following our expectations.