深度特征学习用于PD患者FoG发作预测

Hadeer Elziaat, Nashwa El-Bendary, Ramdan Mowad
{"title":"深度特征学习用于PD患者FoG发作预测","authors":"Hadeer Elziaat, Nashwa El-Bendary, Ramdan Mowad","doi":"10.54623/fue.fcij.5.2.2","DOIUrl":null,"url":null,"abstract":"A common symptom of Parkinson's Disease is Freezing of Gait (FoG) that causes an interrupt of the forward progression of the patient’s feet while walking. Therefore, Freezing of Gait episodes is always engaged to the patient's falls. This paper proposes a model for Freezing of Gait episodes detection and prediction in patients with Parkinson's disease. Predicting Freezing of Gait in this paper considers as a multi-class classification problem with 3 classes namely, FoG, pre-FoG, and walking episodes. In this paper, the extracted feature scheme applied for the detection and the prediction of FoG is Convolutional Neural Network (CNN) spectrogram time-frequency features. The dataset is collected from three tri-axial accelerometer sensors for PD patients with FoG. The performance of the suggested approach has been distinguished by different machine learning classifiers and accelerometer axes.","PeriodicalId":100561,"journal":{"name":"Future Computing and Informatics Journal","volume":"179 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deep feature learning for FoG episodes prediction In patients with PD\",\"authors\":\"Hadeer Elziaat, Nashwa El-Bendary, Ramdan Mowad\",\"doi\":\"10.54623/fue.fcij.5.2.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A common symptom of Parkinson's Disease is Freezing of Gait (FoG) that causes an interrupt of the forward progression of the patient’s feet while walking. Therefore, Freezing of Gait episodes is always engaged to the patient's falls. This paper proposes a model for Freezing of Gait episodes detection and prediction in patients with Parkinson's disease. Predicting Freezing of Gait in this paper considers as a multi-class classification problem with 3 classes namely, FoG, pre-FoG, and walking episodes. In this paper, the extracted feature scheme applied for the detection and the prediction of FoG is Convolutional Neural Network (CNN) spectrogram time-frequency features. The dataset is collected from three tri-axial accelerometer sensors for PD patients with FoG. The performance of the suggested approach has been distinguished by different machine learning classifiers and accelerometer axes.\",\"PeriodicalId\":100561,\"journal\":{\"name\":\"Future Computing and Informatics Journal\",\"volume\":\"179 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Computing and Informatics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54623/fue.fcij.5.2.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Computing and Informatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54623/fue.fcij.5.2.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

帕金森病的一个常见症状是步态冻结(FoG),它会导致患者走路时脚的向前移动中断。因此,步态冻结发作总是与患者跌倒有关。提出了一种用于帕金森病患者步态冻结发作检测和预测的模型。本文认为步态冻结预测是一个多类分类问题,分为三类,即FoG、pre-FoG和walking episodes。本文提取的用于雾霾检测和预测的特征方案是卷积神经网络(CNN)谱图时频特征。数据集收集自三个三轴加速度计传感器,用于PD患者的FoG。所建议的方法的性能被不同的机器学习分类器和加速度计轴所区分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep feature learning for FoG episodes prediction In patients with PD
A common symptom of Parkinson's Disease is Freezing of Gait (FoG) that causes an interrupt of the forward progression of the patient’s feet while walking. Therefore, Freezing of Gait episodes is always engaged to the patient's falls. This paper proposes a model for Freezing of Gait episodes detection and prediction in patients with Parkinson's disease. Predicting Freezing of Gait in this paper considers as a multi-class classification problem with 3 classes namely, FoG, pre-FoG, and walking episodes. In this paper, the extracted feature scheme applied for the detection and the prediction of FoG is Convolutional Neural Network (CNN) spectrogram time-frequency features. The dataset is collected from three tri-axial accelerometer sensors for PD patients with FoG. The performance of the suggested approach has been distinguished by different machine learning classifiers and accelerometer axes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信