I. Bendoym, Lori A. Lepak, J. Leitch, J. Applegate, D. Crouse
{"title":"用于立方体卫星应用的低SWaP高光谱成像传感器","authors":"I. Bendoym, Lori A. Lepak, J. Leitch, J. Applegate, D. Crouse","doi":"10.1117/12.2633886","DOIUrl":null,"url":null,"abstract":"The health of Earth’s atmosphere and its ecosystems are of vital importance to humanity. To assess the current state of the atmosphere and its rate of degradation, the monitoring of atmospheric gasses and particulates is necessary. The development of next-generation Low size, weight, and power (SWaP) sensors and instruments which are required for this task is a high priority for NASA’s Earth Science Technology Office (ESTO). The primary tool to monitor atmospheric gasses is hyperspectral imaging (HSI). Current HSI systems are composed of a large and complex assortment of lenses, filters and cameras that are large, heavy, expensive, and intolerant to physical shocks—all things that make them challenging for use in space-based sensing and imaging applications. As an alternative, a Low SWaP sensor is made possible by integrating a compact HSI sensor onto a CubeSat or SmallSat platform, which is much cheaper to deploy vs. a conventional satellite. To facilitate this, metamaterials are employed at the detector level to reduce the optical components required for HSI, while still providing comparable performance. The metamaterial studied here replaces a conventional grating disperser in a HSI system, by being compatible with a focused beam (fast optics) while spectrally filtering a particular spectral channel.","PeriodicalId":13820,"journal":{"name":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","volume":"44 1","pages":"121950J - 121950J-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low SWaP hyperspectral imaging sensor for CubeSat applications\",\"authors\":\"I. Bendoym, Lori A. Lepak, J. Leitch, J. Applegate, D. Crouse\",\"doi\":\"10.1117/12.2633886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The health of Earth’s atmosphere and its ecosystems are of vital importance to humanity. To assess the current state of the atmosphere and its rate of degradation, the monitoring of atmospheric gasses and particulates is necessary. The development of next-generation Low size, weight, and power (SWaP) sensors and instruments which are required for this task is a high priority for NASA’s Earth Science Technology Office (ESTO). The primary tool to monitor atmospheric gasses is hyperspectral imaging (HSI). Current HSI systems are composed of a large and complex assortment of lenses, filters and cameras that are large, heavy, expensive, and intolerant to physical shocks—all things that make them challenging for use in space-based sensing and imaging applications. As an alternative, a Low SWaP sensor is made possible by integrating a compact HSI sensor onto a CubeSat or SmallSat platform, which is much cheaper to deploy vs. a conventional satellite. To facilitate this, metamaterials are employed at the detector level to reduce the optical components required for HSI, while still providing comparable performance. The metamaterial studied here replaces a conventional grating disperser in a HSI system, by being compatible with a focused beam (fast optics) while spectrally filtering a particular spectral channel.\",\"PeriodicalId\":13820,\"journal\":{\"name\":\"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)\",\"volume\":\"44 1\",\"pages\":\"121950J - 121950J-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2633886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2633886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low SWaP hyperspectral imaging sensor for CubeSat applications
The health of Earth’s atmosphere and its ecosystems are of vital importance to humanity. To assess the current state of the atmosphere and its rate of degradation, the monitoring of atmospheric gasses and particulates is necessary. The development of next-generation Low size, weight, and power (SWaP) sensors and instruments which are required for this task is a high priority for NASA’s Earth Science Technology Office (ESTO). The primary tool to monitor atmospheric gasses is hyperspectral imaging (HSI). Current HSI systems are composed of a large and complex assortment of lenses, filters and cameras that are large, heavy, expensive, and intolerant to physical shocks—all things that make them challenging for use in space-based sensing and imaging applications. As an alternative, a Low SWaP sensor is made possible by integrating a compact HSI sensor onto a CubeSat or SmallSat platform, which is much cheaper to deploy vs. a conventional satellite. To facilitate this, metamaterials are employed at the detector level to reduce the optical components required for HSI, while still providing comparable performance. The metamaterial studied here replaces a conventional grating disperser in a HSI system, by being compatible with a focused beam (fast optics) while spectrally filtering a particular spectral channel.