微正则系综平均的遍历等能分子动力学

W. G. Hoover, C. G. Hoover
{"title":"微正则系综平均的遍历等能分子动力学","authors":"W. G. Hoover, C. G. Hoover","doi":"10.12921/cmst.2018.0000035","DOIUrl":null,"url":null,"abstract":"Considerable research has led to ergodic isothermal dynamics which can replicate Gibbs' canonical distribution for simple ( small ) dynamical problems. Adding one or two thermostat forces to the Hamiltonian motion equations can give an ergodic isothermal dynamics to a harmonic oscillator, to a quartic oscillator, and even to the \"Mexican-Hat\" ( double-well ) potential problem. We consider here a time-reversible dynamical approach to Gibbs' \"microcanonical\" ( isoenergetic ) distribution for simple systems. To enable isoenergetic ergodicity we add occasional random rotations to the velocities. This idea conserves energy exactly and can be made to cover the entire energy shell with an ergodic dynamics. We entirely avoid the Poincare-section holes and island chains typical of Hamiltonian chaos. We illustrate this idea for the simplest possible two-dimensional example, a single particle moving in a periodic square-lattice array of scatterers, the \"cell model\".","PeriodicalId":10561,"journal":{"name":"computational methods in science and technology","volume":"99 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ergodic Isoenergetic Molecular Dynamics for Microcanonical-Ensemble Averages\",\"authors\":\"W. G. Hoover, C. G. Hoover\",\"doi\":\"10.12921/cmst.2018.0000035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considerable research has led to ergodic isothermal dynamics which can replicate Gibbs' canonical distribution for simple ( small ) dynamical problems. Adding one or two thermostat forces to the Hamiltonian motion equations can give an ergodic isothermal dynamics to a harmonic oscillator, to a quartic oscillator, and even to the \\\"Mexican-Hat\\\" ( double-well ) potential problem. We consider here a time-reversible dynamical approach to Gibbs' \\\"microcanonical\\\" ( isoenergetic ) distribution for simple systems. To enable isoenergetic ergodicity we add occasional random rotations to the velocities. This idea conserves energy exactly and can be made to cover the entire energy shell with an ergodic dynamics. We entirely avoid the Poincare-section holes and island chains typical of Hamiltonian chaos. We illustrate this idea for the simplest possible two-dimensional example, a single particle moving in a periodic square-lattice array of scatterers, the \\\"cell model\\\".\",\"PeriodicalId\":10561,\"journal\":{\"name\":\"computational methods in science and technology\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"computational methods in science and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12921/cmst.2018.0000035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"computational methods in science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12921/cmst.2018.0000035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大量的研究已经导致遍历等温动力学可以复制吉布斯正则分布的简单(小)动力问题。在哈密顿运动方程中加入一个或两个温控器力可以给谐振子、四次振子甚至“墨西哥-哈特”(双井)势问题提供遍历等温动力学。我们在此考虑简单系统的吉布斯“微规范”(等能)分布的时间可逆动力学方法。为了实现等能遍历性,我们在速度上添加了偶尔的随机旋转。这个想法可以准确地保存能量,并且可以用遍历动力学覆盖整个能量层。我们完全避免了庞加莱剖面的洞和典型的哈密顿混沌的岛链。我们用一个最简单的二维例子来说明这个想法,一个单粒子在周期性的方晶格散射体阵列中运动,即“细胞模型”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ergodic Isoenergetic Molecular Dynamics for Microcanonical-Ensemble Averages
Considerable research has led to ergodic isothermal dynamics which can replicate Gibbs' canonical distribution for simple ( small ) dynamical problems. Adding one or two thermostat forces to the Hamiltonian motion equations can give an ergodic isothermal dynamics to a harmonic oscillator, to a quartic oscillator, and even to the "Mexican-Hat" ( double-well ) potential problem. We consider here a time-reversible dynamical approach to Gibbs' "microcanonical" ( isoenergetic ) distribution for simple systems. To enable isoenergetic ergodicity we add occasional random rotations to the velocities. This idea conserves energy exactly and can be made to cover the entire energy shell with an ergodic dynamics. We entirely avoid the Poincare-section holes and island chains typical of Hamiltonian chaos. We illustrate this idea for the simplest possible two-dimensional example, a single particle moving in a periodic square-lattice array of scatterers, the "cell model".
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信