Steve Wright的《二次残数与非残数》和Oswald Baumgart的《二次互反律》的联合评述,Franz Lemmermeyer编辑并翻译

Frederic Green
{"title":"Steve Wright的《二次残数与非残数》和Oswald Baumgart的《二次互反律》的联合评述,Franz Lemmermeyer编辑并翻译","authors":"Frederic Green","doi":"10.1145/3197406.3197411","DOIUrl":null,"url":null,"abstract":"In his Disquisitiones Arithmeticæ, quoted above, Gauss called it the “fundamental theorem” that “must certainly be regarded as one of the most elegant of its type.”5 In private, he dubbed it the “Theorema Aureum,” the “Golden Theorem.” The law itself, its many proofs, its implications and generalizations, its influence on the advancement of number theory, and the underlying history, are deep and fascinating.","PeriodicalId":22106,"journal":{"name":"SIGACT News","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Review of Quadratic Residues and Non-Residues by Steve Wright and The Quadratic Reciprocity Law by Oswald Baumgart Edited and translated by Franz Lemmermeyer\",\"authors\":\"Frederic Green\",\"doi\":\"10.1145/3197406.3197411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In his Disquisitiones Arithmeticæ, quoted above, Gauss called it the “fundamental theorem” that “must certainly be regarded as one of the most elegant of its type.”5 In private, he dubbed it the “Theorema Aureum,” the “Golden Theorem.” The law itself, its many proofs, its implications and generalizations, its influence on the advancement of number theory, and the underlying history, are deep and fascinating.\",\"PeriodicalId\":22106,\"journal\":{\"name\":\"SIGACT News\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGACT News\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3197406.3197411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGACT News","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3197406.3197411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在上面引用的《算术研究》中,高斯称其为“基本定理”,“当然必须被视为同类定理中最优雅的定理之一”。私下里,他称之为“金色定理”。这个定律本身,它的许多证明,它的含义和概括,它对数论发展的影响,以及潜在的历史,都是深刻而迷人的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint Review of Quadratic Residues and Non-Residues by Steve Wright and The Quadratic Reciprocity Law by Oswald Baumgart Edited and translated by Franz Lemmermeyer
In his Disquisitiones Arithmeticæ, quoted above, Gauss called it the “fundamental theorem” that “must certainly be regarded as one of the most elegant of its type.”5 In private, he dubbed it the “Theorema Aureum,” the “Golden Theorem.” The law itself, its many proofs, its implications and generalizations, its influence on the advancement of number theory, and the underlying history, are deep and fascinating.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信