通过解析世界各地的航空图像来增强道路地图

G. Máttyus, Shenlong Wang, S. Fidler, R. Urtasun
{"title":"通过解析世界各地的航空图像来增强道路地图","authors":"G. Máttyus, Shenlong Wang, S. Fidler, R. Urtasun","doi":"10.1109/ICCV.2015.197","DOIUrl":null,"url":null,"abstract":"In recent years, contextual models that exploit maps have been shown to be very effective for many recognition and localization tasks. In this paper we propose to exploit aerial images in order to enhance freely available world maps. Towards this goal, we make use of OpenStreetMap and formulate the problem as the one of inference in a Markov random field parameterized in terms of the location of the road-segment centerlines as well as their width. This parameterization enables very efficient inference and returns only topologically correct roads. In particular, we can segment all OSM roads in the whole world in a single day using a small cluster of 10 computers. Importantly, our approach generalizes very well, it can be trained using only 1.5 km2 aerial imagery and produce very accurate results in any location across the globe. We demonstrate the effectiveness of our approach outperforming the state-of-the-art in two new benchmarks that we collect. We then show how our enhanced maps are beneficial for semantic segmentation of ground images.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"79 1","pages":"1689-1697"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"115","resultStr":"{\"title\":\"Enhancing Road Maps by Parsing Aerial Images Around the World\",\"authors\":\"G. Máttyus, Shenlong Wang, S. Fidler, R. Urtasun\",\"doi\":\"10.1109/ICCV.2015.197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, contextual models that exploit maps have been shown to be very effective for many recognition and localization tasks. In this paper we propose to exploit aerial images in order to enhance freely available world maps. Towards this goal, we make use of OpenStreetMap and formulate the problem as the one of inference in a Markov random field parameterized in terms of the location of the road-segment centerlines as well as their width. This parameterization enables very efficient inference and returns only topologically correct roads. In particular, we can segment all OSM roads in the whole world in a single day using a small cluster of 10 computers. Importantly, our approach generalizes very well, it can be trained using only 1.5 km2 aerial imagery and produce very accurate results in any location across the globe. We demonstrate the effectiveness of our approach outperforming the state-of-the-art in two new benchmarks that we collect. We then show how our enhanced maps are beneficial for semantic segmentation of ground images.\",\"PeriodicalId\":6633,\"journal\":{\"name\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"79 1\",\"pages\":\"1689-1697\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"115\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2015.197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 115

摘要

近年来,利用地图的上下文模型已被证明在许多识别和定位任务中非常有效。在本文中,我们提出利用航空图像,以增强免费提供的世界地图。为了实现这一目标,我们利用OpenStreetMap,并将该问题形式化为基于路段中心线位置及其宽度参数化的马尔可夫随机场中的推理问题。这种参数化支持非常有效的推理,并且只返回拓扑正确的道路。特别是,我们可以在一天内使用10台计算机组成的小型集群来分割全世界所有的OSM道路。重要的是,我们的方法泛化得非常好,它可以使用仅1.5平方公里的航空图像进行训练,并在全球任何位置产生非常准确的结果。我们在收集的两个新基准中证明了我们的方法优于最先进的方法的有效性。然后,我们展示了我们的增强地图如何有利于地面图像的语义分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Road Maps by Parsing Aerial Images Around the World
In recent years, contextual models that exploit maps have been shown to be very effective for many recognition and localization tasks. In this paper we propose to exploit aerial images in order to enhance freely available world maps. Towards this goal, we make use of OpenStreetMap and formulate the problem as the one of inference in a Markov random field parameterized in terms of the location of the road-segment centerlines as well as their width. This parameterization enables very efficient inference and returns only topologically correct roads. In particular, we can segment all OSM roads in the whole world in a single day using a small cluster of 10 computers. Importantly, our approach generalizes very well, it can be trained using only 1.5 km2 aerial imagery and produce very accurate results in any location across the globe. We demonstrate the effectiveness of our approach outperforming the state-of-the-art in two new benchmarks that we collect. We then show how our enhanced maps are beneficial for semantic segmentation of ground images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信